CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36687147
PubMed Central
PMC9851865
DOI
10.1016/j.dib.2023.108888
PII: S2352-3409(23)00006-9
Knihovny.cz E-zdroje
- Klíčová slova
- Encrypted traffic, Network monitoring, QUIC, Traffic classification,
- Publikační typ
- časopisecké články MeSH
The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies.
CESNET Zikova 4 Prague 160 00 Czech Republic
Faculty of Information Technology CTU Prague Thakurova 9 Prague 160 00 Czech Republic
Zobrazit více v PubMed
J. Luxemburk, K. Hynek, T. Čejka, A. Lukačovič, P. Šiška, CESNET-QUIC22: a large one-month QUIC network traffic dataset from backbone lines, 2022. Dataset, 10.5281/zenodo.7409924. PubMed PMC
Akbari I., Salahuddin M.A., Ven L., Limam N., Boutaba R., Mathieu B., Moteau S., Tuffin S. A look behind the curtain: traffic classification in an increasingly encrypted web. Proc. ACM Meas. Anal. Comput. Syst. 2021;5(1):04:1–04:26. doi: 10.1145/3447382. DOI
Zhan P., Wang L., Tang Y. Website fingerprinting on early QUIC traffic. Comput. Netw. 2021;200 doi: 10.1016/j.comnet.2021.108538. DOI
S. Rezaei, X. Liu, How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets, arXiv:1812.09761(2020).
Tong V., Tran H.A., Souihi S., Mellouk A. 2018 IEEE Global Communications Conference (GLOBECOM) 2018. A novel QUIC traffic classifier based on convolutional neural networks; pp. 1–6. DOI
Al-Bakhat L., Almuhammadi S. 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA) 2022. Intrusion detection on QUIC traffic: amachine learning approach; pp. 194–199. DOI
Bai L., Yao L., Kanhere S.S., Wang X., Yang Z. 2018 IEEE 43rd Conference on Local Computer Networks (LCN) 2018. Automatic device classification from network traffic streams of internet of things; pp. 1–9. DOI
Yang L., Finamore A., Jun F., Rossi D. Deep learning and zero-day traffic classification: lessons learned from a commercial-grade dataset. IEEE Trans. Netw. Serv. Manag. 2021;18(4):4103–4118. doi: 10.1109/TNSM.2021.3122940. DOI
Lu J., Liu A., Dong F., Gu F., Gama J., Zhang G. Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 2019;31(12):2346–2363. doi: 10.1109/TKDE.2018.2876857. DOI
Aceto G., Ciuonzo D., Montieri A., Pescapé A. Mobile encrypted traffic classification using deep learning: experimental evaluation, lessons learned, and challenges. IEEE Trans. Netw. Serv. Manag. 2019;16(2):445–458. doi: 10.1109/TNSM.2019.2899085. DOI
Luxemburk J., Čejka T. Fine-grained TLS services classification with reject option. Comput. Netw. 2023;220:109467. doi: 10.1016/j.comnet.2022.109467. DOI
Hofstede R., Čeleda P., Trammell B., Drago I., Sadre R., Sperotto A., Pras A. Flow monitoring explained: from packet capture to data analysis with NetFlow and IPFIX. IEEE Commun. Surv. Tutor. 2014;16(4):2037–2064. doi: 10.1109/COMST.2014.2321898. DOI
Xu J., Fan J., Ammar M.H., Moon S.B. IMW ’01. 2001. On the design and performance of prefix-preserving IP traffic trace anonymization.