• This record comes from PubMed

MUC13-miRNA-4647 axis in colorectal cancer: Prospects to identifications of risk factors and clinical outcomes

. 2023 Feb ; 25 (2) : 72. [epub] 20221230

Status PubMed-not-MEDLINE Language English Country Greece Media electronic-ecollection

Document type Journal Article

MUC13, a transmembrane mucin glycoprotein, is overexpressed in colorectal cancer (CRC), however, its regulation and functions are not fully understood. It has been shown that MUC13 protects colonic epithelial cells from apoptosis. Therefore, studying MUC13 and MUC13-regulated pathways may reveal promising therapeutic approaches for CRC treatment. Growing evidence suggests that microRNAs (miRs) are involved in the development and progression of CRC. In the present study, the MUC13-miR-4647 axis was addressed in association with survival of patients. miR-4647 is predicted in silico to bind to the MUC13 gene and was analyzed by RT-qPCR in 187 tumors and their adjacent non-malignant mucosa of patients with CRC. The impact of previously mentioned genes on survival and migration abilities of cancer cells was validated in vitro. Significantly upregulated MUC13 (P=0.02) in was observed tumor tissues compared with non-malignant adjacent mucosa, while miR-4647 (P=0.05) showed an opposite trend. Higher expression levels of MUC13 (log-rank P=0.05) were associated with worse patient's survival. The ectopic overexpression of studied miR resulted in decreased migratory abilities and worse survival of cells. Attenuated MUC13 expression levels confirmed the suppression of colony forming of CRC cells. In summary, the present data suggested the essential role of MUC13-miR-4647 in patients' survival, and this axis may serve as a novel therapeutic target. It is anticipated MUC13 may hold significant potential in the screening, diagnosis and treatment of CRC.

See more in PubMed

McGuckin MA, Linden SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9:265–278. doi: 10.1038/nrmicro2538. PubMed DOI

Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta. 2014;1846:142–151. PubMed

Kufe DW. Mucins in cancer: Function, prognosis and therapy. Nat Rev Cancer. 2009;9:874–885. doi: 10.1038/nrc2761. PubMed DOI PMC

Shimamura T, Ito H, Shibahara J, Watanabe A, Hippo Y, Taniguchi H, Chen Y, Kashima T, Ohtomo T, Tanioka F, et al. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 2005;96:265–273. doi: 10.1111/j.1349-7006.2005.00043.x. PubMed DOI PMC

Walsh MD, Young JP, Leggett BA, Williams SH, Jass JR, McGuckin MA. The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Hum Pathol. 2007;38:883–892. doi: 10.1016/j.humpath.2006.11.020. PubMed DOI

Gupta BK, Maher DM, Ebeling MC, Sundram V, Koch MD, Lynch DW, Bohlmeyer T, Watanabe A, Aburatani H, Puumala SE, et al. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer. J Histochem Cytochem. 2012;60:822–831. doi: 10.1369/0022155412460678. PubMed DOI PMC

Gupta BK, Maher DM, Ebeling MC, Stephenson PD, Puumala SE, Koch MR, Aburatani H, Jaggi M, Chauhan SC. Functions and regulation of MUC13 mucin in colon cancer cells. J Gastroenterol. 2014;49:1378–1391. doi: 10.1007/s00535-013-0885-z. PubMed DOI PMC

Khan S, Ebeling MC, Zaman MS, Sikander M, Yallapu MM, Chauhan N, Yacoubian AM, Behrman SW, Zafar N, Kumar D, et al. MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget. 2014;5:7599–7609. doi: 10.18632/oncotarget.2281. PubMed DOI PMC

Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, Lio Y, Jaggi M. MUC13 mucin augments pancreatic tumorigenesis. Mol Cancer Ther. 2012;11:24–33. doi: 10.1158/1535-7163.MCT-11-0598. PubMed DOI PMC

Sheng Y, Ng CP, Lourie R, Shah ET, He Y, Wong KY, Seim I, Oancea I, Morais C, Jeffery PL, et al. MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. Int J Cancer. 2017;140:2351–2363. doi: 10.1002/ijc.30651. PubMed DOI

Chauhan SC, Vannatta K, Ebeling MC, Vinayek N, Watanabe A, Pandey KK, Bell MC, Koch MD, Aburatani H, Lio Y, Jaggi M. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 2009;69:765–774. doi: 10.1158/0008-5472.CAN-08-0587. PubMed DOI

Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–197. doi: 10.1038/mi.2008.5. PubMed DOI PMC

Sheng YH, Lourie R, Linden SK, Jeffery PL, Roche D, Tran TV, Png CW, Waterhouse N, Sutton P, Florin TH, McGuckin MA. The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut. 2011;60:1661–1670. doi: 10.1136/gut.2011.239194. PubMed DOI

Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 2001;276:18327–18336. doi: 10.1074/jbc.M008850200. PubMed DOI

Sheng YH, He Y, Hasnain SZ, Wang R, Tong H, Clarke DT, Lourie R, Oancea I, Wong KY, Lumley JW, et al. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene. 2017;36:700–713. doi: 10.1038/onc.2016.241. PubMed DOI PMC

Sheng YH, Triyana S, Wang R, Das I, Gerloff K, Florin TH, Sutton P, McGuckin MA. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 2013;6:557–568. doi: 10.1038/mi.2012.98. PubMed DOI

Naccarati A, Pardini B, Hemminki K, Vodicka P. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat Res. 2007;635:118–145. doi: 10.1016/j.mrrev.2007.02.001. PubMed DOI

Tomlinson IP, Dunlop M, Campbell H, Zanke B, Gallinger S, Hudson T, Koessler T, Pharoah PD, Niittymäki I, Tuupanen S, et al. COGENT (COlorectal cancer GENeTics): An international consortium to study the role of polymorphic variation on the risk of colorectal cancer. Br J Cancer. 2010;102:447–454. doi: 10.1038/sj.bjc.6605518. PubMed DOI PMC

Rattray NJW, Charkoftaki G, Rattray Z, Hansen JE, Vasiliou V, Johnson CH. Environmental influences in the etiology of colorectal cancer: The premise of metabolomics. Curr Pharmacol Rep. 2017;3:114–125. doi: 10.1007/s40495-017-0088-z. PubMed DOI PMC

Zhao Y, Zhang W, Huo M, Wang P, Liu X, Wang Y, Li Y, Zhou Z, Xu N, Zhu H. XBP1 regulates the protumoral function of tumor-associated macrophages in human colorectal cancer. Signal Transduct Target Ther. 2021;6:357. doi: 10.1038/s41392-021-00761-7. PubMed DOI PMC

Vymetalkova V, Pardini B, Rosa F, Jiraskova K, Di Gaetano C, Bendova P, Levy M, Veskrnova V, Buchler T, Vodickova L, et al. Polymorphisms in microRNA binding sites of mucin genes as predictors of clinical outcome in colorectal cancer patients. Carcinogenesis. 2017;38:28–39. doi: 10.1093/carcin/bgw114. PubMed DOI

Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490–1502. doi: 10.1016/S0140-6736(13)61649-9. PubMed DOI

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. doi: 10.3322/caac.21601. PubMed DOI

Hao M, Wang K, Ding Y, Li H, Liu Y, Ding L. Which patients are prone to suffer liver metastasis? A review of risk factors of metachronous liver metastasis of colorectal cancer. Eur J Med Res. 2022;27:130. doi: 10.1186/s40001-022-00759-z. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Krizkova V, Dubova M, Susova S, Vycital O, Bruha J, Skala M, Liska V, Daum O, Soucek P. Protein expression of ATP-binding cassette transporters ABCC10 and ABCC11 associates with survival of colorectal cancer patients. Cancer Chemother Pharmacol. 2016;78:595–603. doi: 10.1007/s00280-016-3114-7. PubMed DOI

Witter K, Tonar Z, Matejka VM, Martinca T, Jonák M, Rokosný S, Pirk J. Tissue reaction to three different types of tissue glues in an experimental aorta dissection model: A quantitative approach. Histochem Cell Biol. 2010;133:241–259. doi: 10.1007/s00418-009-0656-3. PubMed DOI

Eberlová L, Tonar Z, Witter K, Křížková V, Nedorost L, Korabečná M, Tolinger P, Kočová J, Boudová L, Třeška V, et al. Asymptomatic abdominal aortic aneurysms show histological signs of progression: A quantitative histochemical analysis. Pathobiology. 2013;80:11–23. doi: 10.1159/000339304. PubMed DOI

Cervena K, Novosadova V, Pardini B, Naccarati A, Opattova A, Horak J, Vodenkova S, Buchler T, Skrobanek P, Levy M, et al. Analysis of MicroRNA expression changes during the course of therapy in rectal cancer patients. Front Oncol. 2021;11:702258. doi: 10.3389/fonc.2021.702258. PubMed DOI PMC

Guru SA, Sumi MP, Najar IA, Mir AR, Saxena A. MO10-6 miR-4647 an early biomarker of outcome in chronic myeloid leukaemia patients. Ann Oncol. 2022;33((Suppl 6)):S488. doi: 10.1016/j.annonc.2022.05.124. DOI

Liu C, Rennie WA, Carmack CS, Kanoria S, Cheng J, Lu J, Ding Y. Effects of genetic variations on microRNA: Target interactions. Nucleic Acids Res. 2014;42:9543–9552. doi: 10.1093/nar/gku675. PubMed DOI PMC

Packer LM, Williams SJ, Callaghan S, Gotley DC, McGuckin MA. Expression of the cell surface mucin gene family in adenocarcinomas. Int J Oncol. 2004;25:1119–1126. PubMed

Lauriola M, Ugolini G, Rosati G, Zanotti S, Montroni I, Manaresi A, Zattoni D, Rivetti S, Mattei G, Coppola D, et al. Identification by a digital gene expression displayer (DGED) and test by RT-PCR analysis of new mRNA candidate markers for colorectal cancer in peripheral blood. Int J Oncol. 2010;37:519–525. PubMed

Settleman J. Predicting response to HER2 kinase inhibition. Oncotarget. 2015;6:588–589. doi: 10.18632/oncotarget.3036. PubMed DOI PMC

Chaturvedi P, Singh AP, Chakraborty S, Chauhan SC, Bafna S, Meza JL, Singh PK, Hollingsworth MA, Mehta PP, Batra SK. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 2008;68:2065–2070. doi: 10.1158/0008-5472.CAN-07-6041. PubMed DOI PMC

Senapati S, Das S, Batra SK. Mucin-interacting proteins: From function to therapeutics. Trends Biochem Sci. 2010;35:236–245. doi: 10.1016/j.tibs.2009.10.003. PubMed DOI PMC

Duan Y, Naruse T, Nakamura M, Yamaguchi Y, Kawashima T, Morikawa Y, Kitamura T, Suda T. Expression and functional analysis of a hemopoietic progenitor antigen, NJ-1 (114/A10), in the megakaryocytic lineage. Biochem Biophys Res Commun. 1998;253:401–406. doi: 10.1006/bbrc.1998.9700. PubMed DOI

Zhu J, Xu Y, Liu S, Qiao L, Sun J, Zhao Q. MicroRNAs associated with colon cancer: New potential prognostic markers and targets for therapy. Front Bioeng Biotechnol. 2020;8:176. doi: 10.3389/fbioe.2020.00176. PubMed DOI PMC

Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs make the call in cancer personalized medicine. Front Cell Dev Biol. 2017;5:86. doi: 10.3389/fcell.2017.00086. PubMed DOI PMC

Falzone L, Scola L, Zanghi A, Biondi A, Di Cataldo A, Libra M, Candido S. Integrated analysis of colorectal cancer microRNA datasets: Identification of microRNAs associated with tumor development. Aging (Albany NY) 2018;10:1000–1014. doi: 10.18632/aging.101444. PubMed DOI PMC

Pidíková P, Herichová I. miRNA clusters with up-regulated expression in colorectal cancer. Cancers (Basel) 2021;13:2979. doi: 10.3390/cancers13122979. PubMed DOI PMC

Wang X, Gao G, Chen Z, Chen Z, Han M, Xie X, Jin Q, Du H, Cao Z, Zhang H. Identification of the miRNA signature and key genes in colorectal cancer lymph node metastasis. Cancer Cell Int. 2021;21:358. doi: 10.1186/s12935-021-02058-9. PubMed DOI PMC

Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...