Alterations of cohesin complex genes in acute myeloid leukemia: differential co-mutations, clinical presentation and impact on outcome
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
36693840
PubMed Central
PMC9873811
DOI
10.1038/s41408-023-00790-1
PII: 10.1038/s41408-023-00790-1
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie * diagnóza genetika MeSH
- chromozomální proteiny, nehistonové genetika MeSH
- koheziny MeSH
- lidé MeSH
- mutace MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- STAG2 protein, human MeSH Prohlížeč
Functional perturbations of the cohesin complex with subsequent changes in chromatin structure and replication are reported in a multitude of cancers including acute myeloid leukemia (AML). Mutations of its STAG2 subunit may predict unfavorable risk as recognized by the 2022 European Leukemia Net recommendations, but the underlying evidence is limited by small sample sizes and conflicting observations regarding clinical outcomes, as well as scarce information on other cohesion complex subunits. We retrospectively analyzed data from a multi-center cohort of 1615 intensively treated AML patients and identified distinct co-mutational patters for mutations of STAG2, which were associated with normal karyotypes (NK) and concomitant mutations in IDH2, RUNX1, BCOR, ASXL1, and SRSF2. Mutated RAD21 was associated with NK, mutated EZH2, KRAS, CBL, and NPM1. Patients harboring mutated STAG2 were older and presented with decreased white blood cell, bone marrow and peripheral blood blast counts. Overall, neither mutated STAG2, RAD21, SMC1A nor SMC3 displayed any significant, independent effect on clinical outcomes defined as complete remission, event-free, relapse-free or overall survival. However, we found almost complete mutual exclusivity of genetic alterations of individual cohesin subunits. This mutual exclusivity may be the basis for therapeutic strategies via synthetic lethality in cohesin mutated AML.
Department of Hematology Oncology and Immunology Philipps University Marburg Marburg Germany
Department of Hematology Oncology and Palliative Care Rems Murr Hospital Winnenden Winnenden Germany
Department of Hematology Oncology and Palliative Care Robert Bosch Hospital Stuttgart Germany
Department of Hematology University Hospital Essen Essen Germany
Department of Internal Medicine 1 University Hospital Carl Gustav Carus Dresden Germany
Department of Internal Medicine 2 Jena University Hospital Jena Germany
Department of Internal Medicine University Hospital Kiel Kiel Germany
Department of Medicine A University Hospital Münster Münster Germany
Division of Health Care Sciences Dresden International University Dresden Germany
DKMS Clinical Trials Unit Dresden Germany
German Cancer Research Center and Medical Clinic 5 University Hospital Heidelberg Heidelberg Germany
German Consortium for Translational Cancer Research DKTK Heidelberg Germany
Medical Clinic 1 Hematology and Celltherapy University Hospital Leipzig Leipzig Germany
Medical Clinic 2 St Bernward Hospital Hildesheim Germany
Medical Clinic 2 University Hospital Frankfurt Frankfurt Germany
Medical Clinic 3 Chemnitz Hospital AG Chemnitz Germany
Medical Clinic 3 St Marien Hospital Siegen Siegen Germany
Medical Clinic 5 University Hospital Erlangen Erlangen Germany
Medical Clinic and Policlinic 2 University Hospital Würzburg Würzburg Germany
Zobrazit více v PubMed
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19. doi: 10.1038/s41375-022-01613-1. PubMed DOI PMC
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28. doi: 10.1182/blood.2022015850. PubMed DOI PMC
Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 ELN recommendations from an International expert panel. Blood. 2022;blood.2022016867. PubMed
Waldman T. Emerging themes in cohesin cancer biology. Nat Rev Cancer. 2020;20:504–15. doi: 10.1038/s41568-020-0270-1. PubMed DOI
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature. 2017;544:503–7. doi: 10.1038/nature22063. PubMed DOI PMC
Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91:35–45. doi: 10.1016/S0092-8674(01)80007-6. PubMed DOI
Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. 1997;91:47–57. doi: 10.1016/S0092-8674(01)80008-8. PubMed DOI PMC
Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT, et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science. 2011;333:1039–43. doi: 10.1126/science.1203619. PubMed DOI PMC
Balbás-Martínez C, Sagrera A, Carrillo-de-Santa-Pau E, Earl J, Márquez M, Vazquez M, et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat Genet. 2013;45:1464–9. doi: 10.1038/ng.2799. PubMed DOI PMC
Solomon DA, Kim JS, Bondaruk J, Shariat SF, Wang ZF, Elkahloun AG, et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat Genet. 2013;45:1428–30. doi: 10.1038/ng.2800. PubMed DOI PMC
Guo G, Sun X, Chen C, Wu S, Huang P, Li Z, et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet. 2013;45:1459–63. doi: 10.1038/ng.2798. PubMed DOI PMC
Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Disco. 2014;4:1326–41. doi: 10.1158/2159-8290.CD-13-1037. PubMed DOI
Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475. doi: 10.1371/journal.pgen.1004475. PubMed DOI PMC
Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Disco. 2014;4:1342–53. doi: 10.1158/2159-8290.CD-14-0622. PubMed DOI PMC
Cancer Genome Atlas Research Network. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73. doi: 10.1038/nature12113. PubMed DOI PMC
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164:550–63. doi: 10.1016/j.cell.2015.12.028. PubMed DOI PMC
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21. doi: 10.1056/NEJMoa1516192. PubMed DOI PMC
Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9. doi: 10.1038/ng.2759. PubMed DOI
Tsai CH, Hou HA, Tang JL, Kuo YY, Chiu YC, Lin CC, et al. Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia. Blood Cancer J. 2017;7:663. doi: 10.1038/s41408-017-0022-y. PubMed DOI PMC
Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood. 2014;123:914–20. doi: 10.1182/blood-2013-07-518746. PubMed DOI
Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366:1090–8. doi: 10.1056/NEJMoa1106968. PubMed DOI PMC
Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C, et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 2013;27:1275–82. doi: 10.1038/leu.2013.58. PubMed DOI PMC
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78. doi: 10.1016/j.cell.2012.06.023. PubMed DOI PMC
Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood. 2014;124:1790–8. doi: 10.1182/blood-2014-04-567057. PubMed DOI PMC
Katainen R, Dave K, Pitkänen E, Palin K, Kivioja T, Välimäki N, et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet. 2015;47:818–21. doi: 10.1038/ng.3335. PubMed DOI
Guo YA, Chang MM, Huang W, Ooi WF, Xing M, Tan P, et al. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun. 2018;9:1520. doi: 10.1038/s41467-018-03828-2. PubMed DOI PMC
Liu EM, Martinez-Fundichely A, Diaz BJ, Aronson B, Cuykendall T, MacKay M, et al. Identification of cancer drivers at CTCF Insulators in 1,962 whole genomes. Cell Syst. 2019;8:446–55. doi: 10.1016/j.cels.2019.04.001. PubMed DOI PMC
Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically associating domains. Sci Adv. 2019;5:eaaw1668. doi: 10.1126/sciadv.aaw1668. PubMed DOI PMC
Cuadrado A, Giménez-Llorente D, Kojic A, Rodríguez-Corsino M, Cuartero Y, Martín-Serrano G, et al. Specific contributions of cohesin-SA1 and Cohesin-SA2 to TADs and polycomb domains in embryonic stem cells. Cell Rep. 2019;27:3500–10. doi: 10.1016/j.celrep.2019.05.078. PubMed DOI PMC
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010;467:430–5. doi: 10.1038/nature09380. PubMed DOI PMC
Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, Wang K, et al. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J Exp Med. 2015;212:1833–50. doi: 10.1084/jem.20151323. PubMed DOI PMC
Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, Li R, et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell. 2015;17:675–88. doi: 10.1016/j.stem.2015.09.017. PubMed DOI PMC
Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, et al. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med. 2015;212:1819–32. doi: 10.1084/jem.20151317. PubMed DOI PMC
Röllig C, Thiede C, Gramatzki M, Aulitzky W, Bodenstein H, Bornhäuser M, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116:971–8. doi: 10.1182/blood-2010-01-267302. PubMed DOI
Schaich M, Parmentier S, Kramer M, Illmer T, Stölzel F, Röllig C, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. J Clin Oncol. 2013;31:2094–102. doi: 10.1200/JCO.2012.46.4743. PubMed DOI
Röllig C, Kramer M, Gabrecht M, Hänel M, Herbst R, Kaiser U, et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann Oncol. 2018;29:973–8. doi: 10.1093/annonc/mdy030. PubMed DOI
Röllig C, Serve H, Hüttmann A, Noppeney R, Müller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–9. doi: 10.1016/S1470-2045(15)00362-9. PubMed DOI
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4. doi: 10.1001/jama.2013.281053. PubMed DOI
Gebhard C, Glatz D, Schwarzfischer L, Wimmer J, Stasik S, Nuetzel M, et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33:26–36. doi: 10.1038/s41375-018-0165-2. PubMed DOI
Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J, et al. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001. PubMed DOI PMC
Shuster JJ. Median follow-up in clinical trials. J Clin Oncol. 1991;9:191–2. doi: 10.1200/JCO.1991.9.1.191. PubMed DOI
Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45:1232–7. doi: 10.1038/ng.2731. PubMed DOI
Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. doi: 10.1182/blood-2014-11-610543. PubMed DOI PMC
Lee BK, Iyer VR. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem. 2012;287:30906–13. doi: 10.1074/jbc.R111.324962. PubMed DOI PMC
Zlatanova J, Caiafa P. CTCF and its protein partners: divide and rule? J Cell Sci. 2009;122:1275–84. doi: 10.1242/jcs.039990. PubMed DOI
Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 2005;437:147–53. doi: 10.1038/nature03915. PubMed DOI
Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A, et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet. 2011;43:470–5. doi: 10.1038/ng.796. PubMed DOI PMC
O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet. 2017;18:613–23. doi: 10.1038/nrg.2017.47. PubMed DOI
Lucchesi JC. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila Melanogaster. Genetics. 1968;59:37–44. doi: 10.1093/genetics/59.1.37. PubMed DOI PMC
Hennessy KM, Lee A, Chen E, Botstein D. A group of interacting yeast DNA replication genes. Genes Dev. 1991;5:958–69. doi: 10.1101/gad.5.6.958. PubMed DOI
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. frontiers in cell and developmental biology [Internet]. 2020 [cited 2022 Sep 10];8. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2020.564601. PubMed DOI PMC
Bailey ML, O’Neil NJ, van Pel DM, Solomon DA, Waldman T, Hieter P. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol Cancer Ther. 2014;13:724–32. doi: 10.1158/1535-7163.MCT-13-0749. PubMed DOI PMC
Black HE, Jhujh S, Stewart GS, Savage KI, Mills KI. STAG2 loss gives rise to therapeutically targetable DNA damage repair defects and altered replication fork dynamics in acute myeloid leukaemia. Blood. 2019;134:1255. doi: 10.1182/blood-2019-129828. DOI
Garcia J. A pilot proof-of-concept study of talazoparib for cohesin-mutated AML and MDS with excess blasts [Internet]. clinicaltrials.gov; 2022 Jul [cited 2022 Sep 9]. Report No.: NCT03974217. Available from: https://clinicaltrials.gov/ct2/show/NCT03974217.