Click and Detect: Versatile Ampicillin Aptasensor Enabled by Click Chemistry on a Graphene-Alkyne Derivative

. 2023 Dec ; 19 (51) : e2207216. [epub] 20230126

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36703534

Grantová podpora
FW01010183 Technology Agency of the Czech Republic, Program TREND
CZ.02.1.01/0.0/0.0/16_019/0000754 ERDF/ESF project "Nano4Future"
LM2018124 Ministry of Education, Youth and Sports of the Czech Republic
101059266 European Union's Horizon Europe research and innovation program
683024 ERC consolidator grant
19-27454X Czech Science Foundation

Tackling the current problem of antimicrobial resistance (AMR) requires fast, inexpensive, and effective methods for controlling and detecting antibiotics in diverse samples at the point of interest. Cost-effective, disposable, point-of-care electrochemical biosensors are a particularly attractive option. However, there is a need for conductive and versatile carbon-based materials and inks that enable effective bioconjugation under mild conditions for the development of robust, sensitive, and selective devices. This work describes a simple and fast methodology to construct an aptasensor based on a novel graphene derivative equipped with alkyne groups prepared via fluorographene chemistry. Using click chemistry, an aptamer is immobilized and used as a successful platform for the selective determination of ampicillin in real samples in the presence of interfering molecules. The electrochemical aptasensor displayed a detection limit of 1.36 nM, high selectivity among other antibiotics, the storage stability of 4 weeks, and is effective in real samples. Additionally, structural and docking simulations of the aptamer shed light on the ampicillin binding mechanism. The versatility of this platform opens up wide possibilities for constructing a new class of aptasensor based on disposable screen-printed carbon electrodes usable in point-of-care devices.

Zobrazit více v PubMed

C. J. Murray, K. S. Ikuta, F. Sharara, L. Swetschinski, G. R. Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S. C. Johnson, A. J. Browne, M. G. Chipeta, F. Fell, S. Hackett, G. Haines-Woodhouse, B. H. K. Hamadani, E. A. P. Kumaran, B. McManigal, R. Agarwal, S. Akech, S. Albertson, J. Amuasi, J. Andrews, A. Aravkin, E. Ashley, F. Bailey, S. Baker, B. Basnyat, A. Bekker, et al., Lancet 2022, 399, 629.

J. O'Neill, Review on Antimicrobial Resistance https://amr-review.org/ (accessed: November 2022).

E. C. Reynoso, S. Laschi, I. Palchetti, E. Torres, Chemosensors 2021, 9, 232.

Z. V. Samsonova, O. S. Shchelokova, N. L. Ivanova, M. Y. Rubtsova, A. M. Egorov, Appl. Biochem. Microbiol. 2005, 41, 589.

H. C. Ates, H. Mohsenin, C. Wenzel, R. T. Glatz, H. J. Wagner, R. Bruch, N. Hoefflin, S. Spassov, L. Streicher, S. Lozano-Zahonero, B. Flamm, R. Trittler, M. J. Hug, M. Köhn, J. Schmidt, S. Schumann, G. A. Urban, W. Weber, C. Dincer, Adv. Mater. 2022, 34, 2104555.

Q. ul ain Zahra, S. A. H. Mohsan, F. Shahzad, M. Qamar, B. Qiu, Z. Luo, S. A. Zaidi, Biosens. Bioelectron. 2022, 215, 114509.

F. Ghorbani, H. Abbaszadeh, J. E. N. Dolatabadi, L. Aghebati-Maleki, M. Yousefi, Biosens. Bioelectron. 2019, 142, 111484.

Z. Yu, R. Y. Lai, Talanta 2018, 176, 619.

A. Idili, C. Parolo, R. Alvarez-Diduk, A. Merkoçi, ACS Sens. 2021, 6, 3093.

P. Dauphin-Ducharme, K. Yang, N. Arroyo-Currás, K. L. Ploense, Y. Zhang, J. Gerson, M. Kurnik, T. E. Kippin, M. N. Stojanovic, K. W. Plaxco, ACS Sens. 2019, 4, 2832.

F. V. Oberhaus, D. Frense, D. Beckmann, Biosensors 2020, 10, 45.

L. Liao, H. Peng, Z. Liu, J. Am. Chem. Soc. 2014, 136, 12194.

J. Park, M. Yan, Acc. Chem. Res. 2013, 46, 181.

I. Prattis, E. Hui, P. Gubeljak, G. S. Kaminski Schierle, A. Lombardo, L. G. Occhipinti, Trends Biotechnol. 2021, 39, 1065.

E. Morales-Narváez, L. Baptista-Pires, A. Zamora-Gálvez, A. Merkoçi, Adv. Mater. 2017, 29, 1604905.

H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon, S. H. Choi, D.-H. Kim, Nat. Nanotechnol. 2016, 11, 566.

X. Li, L. Zhi, Chem. Soc. Rev. 2018, 47, 3189.

A. Y. S. Eng, C. K. Chua, M. Pumera, Nanoscale 2015, 7, 20256.

R. Zbořil, F. Karlický, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Šafářová, D. Jančík, C. Trapalis, M. Otyepka, Small 2010, 6, 2885.

D. D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zbořil, M. Otyepka, Appl. Mater. Today 2017, 9, 60.

D. Panáček, L. Zdražil, M. Langer, V. Šedajová, Z. Baďura, G. Zoppellaro, Q. Yang, E. P. Nguyen, R. Álvarez-Diduk, V. Hrubý, J. Kolařík, N. Chalmpes, A. B. Bourlinos, R. Zbořil, A. Merkoçi, A. Bakandritsos, M. Otyepka, Small 2022, 18, 2201003.

D. D. Chronopoulos, M. Medved', P. Błoński, Z. Nováček, P. Jakubec, O. Tomanec, A. Bakandritsos, V. Novotná, R. Zbořil, M. Otyepka, Chem. Commun. 2019, 55, 1088.

A. Bakandritsos, M. Pykal, P. Błoński, P. Jakubec, D. D. Chronopoulos, K. Poláková, V. Georgakilas, K. Čépe, O. Tomanec, V. Ranc, A. B. Bourlinos, R. Zbořil, M. Otyepka, ACS Nano 2017, 11, 2982.

A. Lenarda, A. Bakandritsos, M. Bevilacqua, C. Tavagnacco, M. Melchionna, A. Naldoni, T. Steklý, M. Otyepka, R. Zbořil, P. Fornasiero, ACS Omega 2019, 4, 19944.

H. Seelajaroen, A. Bakandritsos, M. Otyepka, R. Zbořil, N. S. Sariciftci, ACS Appl. Mater. Interfaces 2020, 12, 250.

J. M. R. Flauzino, E. P. Nguyen, Q. Yang, G. Rosati, D. Panáček, A. G. Brito-Madurro, J. M. Madurro, A. Bakandritsos, M. Otyepka, A. Merkoçi, Biosens. Bioelectron. 2022, 195, 113628.

H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40, 2004.

M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.

Y. An, T. Jin, Y. Zhu, F. Zhang, P. He, Biosens. Bioelectron. 2019, 142, 111503.

Q. Liu, Q. Hu, L. Li, J. Kong, X. Zhang, Anal. Methods 2017, 9, 3825.

M. Namvari, L. Du, F. J. Stadler, RSC Adv. 2017, 7, 21531.

R. P. Lopes, M. P. M. Marques, R. Valero, J. Tomkinson, L. A. E. B. de Carvalho, New J. Chem. 2012, 27, 273.

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

Z. Hu, X. Wang, W. Wang, Z. Zhang, H. Gao, Y. Mao, Phys. Chem. Chem. Phys. 2015, 17, 22711.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, W. Min, Nat. Commun. 2018, 9, 2995.

G. R. AbelJr., Z. A. Calabrese, J. Ayco, J. E. Hein, T. Ye, Bioconjugate Chem. 2016, 27, 698.

P. Dauphin-Ducharme, K. W. Plaxco, Anal. Chem. 2016, 88, 11654.

E. M. Agency, Committee for Veterinary Medicinal Products: Penicillins, https://www.ema.europa.eu/en/documents/mrl-report/penicillins-summary-report-committee-veterinary-medicinal-products_en.pdf (accessed: November 2022).

S. Sachi, J. Ferdous, M. H. Sikder, S. M. Azizul Karim Hussani, J. Adv. Vet. Anim. Res. 2019, 6, 315.

J. Šponer, G. Bussi, M. Krepl, P. Banáš, S. Bottaro, R. A. Cunha, A. Gil-Ley, G. Pinamonti, S. Poblete, P. Jurečka, N. G. Walter, M. Otyepka, Chem. Rev. 2018, 118, 4177.

M. Paloncýová, M. Pykal, P. Kührová, P. Banáš, J. Šponer, M. Otyepka, Small 2022, 18, 2204408.

K. M. Song, E. Jeong, W. Jeon, M. Cho, C. Ban, Anal. Bioanal. Chem. 2012, 402, 2153.

T. J. Macke, D. A. Case, Molecular Modeling of Nucleic Acids, American Chemical Society, Washington DC 1997, 379.

M. Zuker, Nuceic Acids Res. 2003, 31, 3406.

M. Antczak, M. Popenda, T. Zok, J. Sarzynska, T. Ratajczak, K. Tomczyk, R. W. Adamiak, M. Szachniuk, Acta Biochim. Pol. 2016, 63, 737.

C. I. Bayly, P. Cieplak, W. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, et al., Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, H. Gohlke, A. W. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. J. Mermelstein, K. M. Merz, Y. Miao, G. Monard, et al., AMBER 2018, University of California, San Francisco, 2018.

D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701.

Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 1999, 314, 141.

M. Zgarbová, J. Šponer, P. Jurečka, J. Chem. Theory Comput. 2021, 17, 6292.

A. Pérez, I. Marchán, D. Svozil, J. Šponer, T. E. Cheatham, C. A. Laughton, M. Orozco, Biophys. J. 2007, 92, 3817.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117, 5179.

J. Wang, P. Cieplak, P. A. Kollman, J. Comput. Chem. 2000, 21, 1049.

M. Krepl, M. Zgarbová, P. Stadlbauer, M. Otyepka, P. Banáš, J. Koča, T. E. Cheatham, P. Jurečka, J. Šponer, J. Chem. Theory Comput. 2012, 8, 2506.

M. Zgarbová, F. J. Luque, J. Šponer, T. E. I. Cheatham, M. Otyepka, P. Jurečka, J. Chem. Theory Comput. 2013, 9, 2339.

M. Zgarbová, J. Šponer, M. Otyepka, T. E. I. Cheatham, R. Galindo-Murillo, P. Jurečka, J. Chem. Theory Comput. 2015, 11, 5723.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.

I. S. Joung, T. E. I. Cheatham, J. Phys. Chem. B 2008, 112, 9020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...