SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36705512
PubMed Central
PMC10118267
DOI
10.1093/plcell/koad020
PII: 7007924
Knihovny.cz E-resources
- MeSH
- Arabidopsis * genetics metabolism MeSH
- DNA metabolism MeSH
- DNA Repair genetics MeSH
- DNA Damage MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- Proteins metabolism MeSH
- Sumoylation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Cell Cycle Proteins MeSH
- Proteins MeSH
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
See more in PubMed
Alt A, Dang HQ, Wells OS, Polo LM, Smith MA, McGregor GA, Welte T, Lehmann AR, Pearl LH, Murray JM, et al. (2017) Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat Commun 8(1): 14011. PubMed PMC
Barker S, Weinfeld M, Murray D (2005) DNA–Protein crosslinks: their induction, repair, and biological consequences. Mutat Res 589(2): 111–135 PubMed
Bernges F, Zeller WJ (1996) Combination effects of poly(ADP-ribose) polymerase inhibitors and DNA-damaging agents in ovarian tumor cell lines–with special reference to cisplatin. J Cancer Res Clin Oncol 122(11): 665–670 PubMed
Bienert S, Waterhouse A, De Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository—new features and functionality. Nucleic Acids Res 45(D1): D313–D319 PubMed PMC
Borgermann N, Ackermann L, Schwertman P, Hendriks IA, Thijssen K, Liu JC, Lans H, Nielsen ML, Mailand N (2019) SUMOylation promotes protective responses to DNA -protein crosslinks. EMBO J 38(8): e101496 PubMed PMC
Chen XB, Melchionna R, Denis CM, Gaillard PHL, Blasina A, Van de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH (2001) Human Mus81-associated endonuclease cleaves holliday junctions in vitro. Mol Cell 8(5): 1117–1127 PubMed
Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453(7194): 489–494 PubMed
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2): 80–92 PubMed PMC
Classen S, Olland S, Berger JM (2003) Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A 100(19): 10629–10634 PubMed PMC
Core R Team (2020). A language and environment for statistical computing. R Found. Stat. Comput. 2: https://www.R–project.org
Díaz M, Pečinková P, Nowicka A, Baroux C, Sakamoto T, Gandha PY, Jeřábková H, Matsunaga S, Grossniklaus U, Pecinka A, et al. (2019) The SMC5/6 complex subunit NSE4A is involved in DNA damage repair and seed development. Plant Cell 31(7): 1579–1597 PubMed PMC
Diaz M, Pecinka A (2018) Scaffolding for repair: understanding molecular functions of the SMC5/6 complex. Genes (Basel) 9(1): 36. PubMed PMC
Diaz M, Pecinkova P, Nowicka A, Baroux C, Sakamoto T, Gandha PY, Jeřábková H, Matsunaga S, Grossniklaus U, Pecinka A (2019) SMC5/6 Complex subunit NSE4A is involved in DNA damage repair and seed development in Arabidopsis. Plant Cell 31(7): 1579–1597 PubMed PMC
Doe CL, Ahn JS, Dixon J, Whitby MC (2002) Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J Biol Chem 277(36): 32753–32759 PubMed
Dorn A, Puchta H (2020) Analyzing somatic DNA repair in Arabidopsis meiotic mutants. Methods Mol Biol 2061: 359–366 PubMed
Enderle J, Dorn A, Beying N, Trapp O, Puchta H (2019) The protease WSS1A, the endonuclease MUS81, and the phosphodiesterase TDP1 are involved in independent pathways of DNA-protein crosslink repair in plants. Plant Cell 31(4): 775–790 PubMed PMC
Hacker L, Dorn A, Enderle J, Puchta H (2022) The repair of topoisomerase 2 cleavage complexes in Arabidopsis. Plant Cell 34(1): 287–301 PubMed PMC
Hacker L, Dorn A, Puchta H (2020) Repair of DNA-protein crosslinks in plants. DNA Repair (Amst) 87: 102787 PubMed
Hallett ST, Harry IC, Schellenberger P, Zhou L, Cronin NB, Baxter J, Etheridge TJ, Murray JM, Oliver AW (2022) Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res 50(16): 9505–9520 PubMed PMC
Hammoudi V, Vlachakis G, Schranz ME, van den Burg HA (2016) Whole-genome duplications followed by tandem duplications drive diversification of the protein modifier SUMO in angiosperms. New Phytol 211(1): 172–185 PubMed PMC
Hartung F, Suer S, Bergmann T, Puchta H (2006) The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A. Nucleic Acids Res 34(16): 4438–4448 PubMed PMC
Klages-Mundt NL, Li L (2017) Formation and repair of DNA-protein crosslink damage. Sci China Life Sci 60(10): 1065–1076 PubMed PMC
Kojima Y, Machida YJ (2020) DNA-protein crosslinks from environmental exposure: mechanisms of formation and repair. Environ Mol Mutagen 61(7): 716–729 PubMed PMC
Kubaláková M, Macas J, Doležel J (1997) Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor Appl Genet 94(6-7): 758–763
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4): 357–359 PubMed PMC
Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3): R25. PubMed PMC
Larsen NB, Gao AO, Sparks JL, Gallina I, Wu RA, Mann M, Räschle M, Walter JC, Duxin JP (2019) Replication-Coupled DNA-protein crosslink repair by SPRTN and the proteasome in Xenopus egg extracts. Mol Cell 73(3): 574–588.e7 PubMed PMC
Larsson A (2014) Aliview: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22): 3276–3278 PubMed PMC
Lee JH, Mosher EP, Lee YS, Bumpus NN, Berger JM (2022) Control of topoisomerase II activity and chemotherapeutic inhibition by TCA cycle metabolites. Cell Chem Biol 29(3): 476–489.e6 PubMed PMC
Lee JH, Wendorff TJ, Berger JM (2017) Resveratrol: a novel type of topoisomerase II inhibitor. J Biol Chem 292(51): 21011–21022 PubMed PMC
Liu C-HH, Finke A, Díaz M, Rozhon W, Poppenberger B, Baubec T, Pecinka A (2015) Repair of DNA damage induced by the cytidine analog zebularine requires ATR and ATM in arabidopsis. Plant Cell 27(6): 1788–1800 PubMed PMC
Liu JCY, Kühbacher U, Larsen NB, Borgermann N, Garvanska DH, Hendriks IA, Ackermann L, Haahr P, Gallina I, Guérillon C, et al. (2021) Mechanism and function of DNA replication-independent DNA-protein crosslink repair via the SUMO-RNF4 pathway. EMBO J 40(18): e107413 PubMed PMC
Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157(1): 29–39 PubMed PMC
Mannuss A, Dukowic-Schulze S, Suer S, Hartung F, Pacher M, Puchta H (2010) RAD5A, RECQ4A, AND MUS81 have specific functions in homologous recombination and define different pathways of dna repair in Arabidopsis thaliana. Plant Cell 22(10): 3318–3330 PubMed PMC
Maslov AY, Lee M, Gundry M, Gravina S, Strogonova N, Tazearslan C, Bendebury A, Suh Y, Vijg J (2012) 5-Aza-2′-deoxycytidine-induced Genome rearrangements are mediated by DNMT1. Oncogene 31(50): 5172–5179 PubMed PMC
Menear KA, Adcock C, Boulter R, Cockcroft X-L, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, et al. (2008) 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl] -2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20): 6581–6591 PubMed
Mengiste T, Revenkova E, Bechtold N, Paszkowski J (1999) An SMC-like protein is required for efficient homologous recombination in arabidopsis. EMBO J 18(16): 4505–4512 PubMed PMC
Nakamura J, Nakamura M (2020) DNA-protein crosslink formation by endogenous aldehydes and AP sites. DNA Repair (Amst) 88: 102806 PubMed PMC
Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev 9(5): 338–350 PubMed PMC
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke A, Rozhon W, Poppenberger B, Otmar M, et al. (2020) Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J 102(1): 68–84 PubMed
Palecek JJ (2019) SMC5/6: multifunctional player in replication. Genes (Basel) 10(1): 7 PubMed PMC
Pommier Y, Marchand C (2012) Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov 11(1): 25–36 PubMed PMC
Potts PR, Porteus MH, Yu H (2006) Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25(14): 3377–3388 PubMed PMC
Pouliot JJ, Yao KC, Robertson CA, Nash HA (1999) Yeast gene for a tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286(5439): 552–555 PubMed
Prochazkova K, Finke A, Dvořák Tomaštíková E, Filo J, Bente H, Dvořák P, Ovečka M, Šamaj J, Pecinka A (2022) Zebularine induces enzymatic DNA–protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei. Nucleic Acids Res 50(1): 244–258 PubMed PMC
Regairaz M, Zhang YW, Fu H, Agama KK, Tata N, Agrawal S, Aladjem MI, Pommier Y (2011) Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J Cell Biol 195(5): 739–749 PubMed PMC
Reinking HK, Kang HS, Götz MJ, Li HY, Kieser A, Zhao S, Acampora AC, Weickert P, Fessler E, Jae LT, et al. (2020) DNA structure-specific cleavage of DNA-protein crosslinks by the SPRTN protease. Mol Cell 80(1): 102–113 PubMed PMC
Ruggiano A, Vaz B, Kilgas S, Popović M, Rodriguez-Berriguete G, Singh AN, Higgins GS, Kiltie AE, Ramadan K (2021) The protease SPRTN and SUMOylation coordinate DNA-protein crosslink repair to prevent genome instability. Cell Rep 37(10): 110080 PubMed PMC
Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, Muñoz-Cabello AM, Mueller GA, London RE, Cortés-Ledesma F, Williams RS (2017) ZATT (ZNF451)–mediated resolution of topoisomerase 2 DNA-protein cross-links. Science 357(6358): 1412–1416 PubMed PMC
Schrödinger, LLC (2015). The {PyMOL} Molecular Graphics System, Version∼1.8
Serbyn N, Bagdiul I, Noireterre A, Michel AH, Suhandynata RT, Zhou H, Kornmann B, Stutz F (2021) SUMO Orchestrates multiple alternative DNA-protein crosslink repair pathways. Cell Rep 37(8): 110034 PubMed PMC
Stingele J, Bellelli R, Boulton SJ (2017) Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol 18(9): 563–573 PubMed
Stingele J, Bellelli R, Alte F, Hewitt G, Sarek G, Maslen SL, Tsutakawa SE, Borg A, Kjær S, Tainer JA, et al. (2016) Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN. Mol Cell 64(4): 688–703 PubMed PMC
Stingele J, Jentsch S (2015) DNA-protein crosslink repair. Nat Rev Mol Cell Biol 16(8): 455–460 PubMed
Stingele J, Schwarz MS, Bloemeke N, Wolf PG, Jentsch S (2014) A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158(2): 327–338 PubMed
Sun Y, Jenkins LMM, Su YP, Nitiss KC, Nitiss JL, Pommier Y, Miller Jenkins LM, Su YP, Nitiss KC, Nitiss JL, et al. (2020) A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation. Sci Adv 6(46): eaba6290 PubMed PMC
Sun Y, Saha LK, Saha S, Jo U, Pommier Y (2020) Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair (Amst) 94: 102926 PubMed PMC
Torres-Ramos CA, Prakash S, Prakash L (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in saccharomyces cerevisiae. Mol Cell Biol 22(7): 2419–2426 PubMed PMC
Tsuda M, Kitamasu K, Kumagai C, Sugiyama K, Nakano T, Ide H (2020) Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase 1 DNA-protein crosslinks and 3′-blocking lesions in the absence of tyrosyl-DNA phosphodiesterase 1 (TDP1). DNA Repair (Amst) 91–92: 102849 PubMed
Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D (2018) DNA Activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J 37(12): e98306 PubMed PMC
Vaz B, Popovic M, Newman JA, Fielden J, Aitkenhead H, Halder S, Singh AN, Vendrell I, Fischer R, Torrecilla I, et al. (2016) Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair. Mol Cell 64(4): 704–719 PubMed PMC
Waldman BC, Waldman AS (1990) Illegitimate and homologous recombination in mammalian cells: differential sensitivity to an inhibitor of poly(ADP-ribosylation). Nucleic Acids Res 18(20): 5981–5988 PubMed PMC
Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I (2009) The STRUCTURAL MAINTENANCE of CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21(9): 2688–2699 PubMed PMC
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1): W296–W303 PubMed PMC
Weickert P, Stingele J (2022) DNA-Protein Crosslinks and their resolution. Annu Rev Biochem 91(1): 157–181 PubMed
Whalen JM, Dhingra N, Wei L, Zhao X, Freudenreich CH (2020) Relocation of collapsed forks to the nuclear pore Complex Depends on sumoylation of DNA repair proteins and permits Rad51 association. Cell Rep 31(6): 107635 PubMed PMC
Willing E-MM, Piofczyk T, Albert A, Winkler JB, Schneeberger K, Pecinka A (2016) UVR2 Ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nat Commun 7(1): 13522. PubMed PMC
Yang F, Fernández Jiménez N, Majka J, Pradillo M, Pecinka A (2021) Structural maintenance of chromosomes 5/6 Complex is necessary for tetraploid genome stability in Arabidopsis thaliana. Front Plant Sci 12: 748252 PubMed PMC
Yu Y, Li S, Ser Z, Kuang H, Than T, Guan D, Zhao X, Patel DJ (2022) Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc Natl Acad Sci U S A 119(23): e2202799119 PubMed PMC
Zhang H, Xiong Y, Chen J (2020) DNA–Protein cross-link repair: what do we know now? Cell Biosci 10(1): 3. PubMed PMC