SMC5/6: Multifunctional Player in Replication

. 2018 Dec 22 ; 10 (1) : . [epub] 20181222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30583551

Grantová podpora
GA18-02067S Grantová Agentura České Republiky
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy

The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.

Zobrazit více v PubMed

Bürmann F., Gruber S. SMC condensin: Promoting cohesion of replicon arms. Nat. Struct. Mol. Biol. 2015;22:653–655. doi: 10.1038/nsmb.3082. PubMed DOI

Gruber S. SMC complexes sweeping through the chromosome: Going with the flow and against the tide. Curr. Opin. Microbiol. 2018;42:96–103. doi: 10.1016/j.mib.2017.10.004. PubMed DOI

Diaz M., Pecinka A. Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex. Genes. 2018;9:36. doi: 10.3390/genes9010036. PubMed DOI PMC

Murray J.M., Carr A.M. Smc5/6: A link between DNA repair and unidirectional replication? Nat. Rev. Mol. Cell Biol. 2007;9:177–182. doi: 10.1038/nrm2309. PubMed DOI

Uhlmann F. SMC complexes: From DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 2016;17:399–412. doi: 10.1038/nrm.2016.30. PubMed DOI

Nasmyth K., Haering C.H. Cohesin: Its roles and mechanisms. Annu. Rev. Genet. 2009;43:525–558. doi: 10.1146/annurev-genet-102108-134233. PubMed DOI

Hassler M., Shaltiel I.A., Haering C.H. Towards a Unified Model of SMC Complex Function. Curr. Biol. 2018;28:R1266–R1281. doi: 10.1016/j.cub.2018.08.034. PubMed DOI PMC

Kschonsak M., Haering C.H. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. Bioessays. 2015;37:755–766. doi: 10.1002/bies.201500020. PubMed DOI PMC

Haering C.H., Gruber S. SnapShot: SMC Protein Complexes Part II. Cell. 2016;164:818. doi: 10.1016/j.cell.2016.01.052. PubMed DOI

Carter S.D., Sjogren C. The SMC complexes, DNA and chromosome topology: Right or knot? Crit. Rev. Biochem. Mol. Biol. 2012;47:1–16. doi: 10.3109/10409238.2011.614593. PubMed DOI

Jeppsson K., Kanno T., Shirahige K., Sjögren C. The maintenance of chromosome structure: Positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 2014;15:601–614. doi: 10.1038/nrm3857. PubMed DOI

Kegel A., Sjögren C. The Smc5/6 complex: More than repair? Cold Spring Harb. Symp. Quant. Biol. 2010;75:179–187. doi: 10.1101/sqb.2010.75.047. PubMed DOI

Aragon L., Martinez-Perez E., Merkenschlager M. Condensin, cohesin and the control of chromatin states. Curr. Opin. Genet. Dev. 2013;23:204–211. doi: 10.1016/j.gde.2012.11.004. PubMed DOI

De Piccoli G., Torres-Rosell J., Aragon L. The unnamed complex: What do we know about Smc5-Smc6? Chromosome Res. 2009;17:251–263. doi: 10.1007/s10577-008-9016-8. PubMed DOI

Burmann F., Basfeld A., Nunez R.V., Diebold-Durand M.L., Wilhelm L., Gruber S. Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin. Mol. Cell. 2017;65:861–872. doi: 10.1016/j.molcel.2017.01.026. PubMed DOI PMC

Alt A., Dang H.Q., Wells O.S., Polo L.M., Smith M.A., McGregor G.A., Welte T., Lehmann A.R., Pearl L.H., Murray J.M., et al. Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat. Commun. 2017;8:14011. doi: 10.1038/ncomms14011. PubMed DOI PMC

Griese J.J., Witte G., Hopfner K.P. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res. 2010;38:3454–3465. doi: 10.1093/nar/gkq038. PubMed DOI PMC

Hirano M., Hirano T. Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA. Embo J. 2002;21:5733–5744. doi: 10.1093/emboj/cdf575. PubMed DOI PMC

Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E., Sweeney S., Shinagawa H., Watts F., Lehmann A. Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol. Cell. Biol. 2005;25:172–184. doi: 10.1128/MCB.25.1.172-184.2005. PubMed DOI PMC

Bürmann F., Shin H.C., Basquin J., Soh Y.M., Giménez-Oya V., Kim Y.G., Oh B.H., Gruber S. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 2013;20:371–379. doi: 10.1038/nsmb.2488. PubMed DOI

Gligoris T.G., Scheinost J.C., Bürmann F., Petela N., Chan K.L., Uluocak P., Beckouët F., Gruber S., Nasmyth K., Löwe J. Closing the cohesin ring: Structure and function of its Smc3-kleisin interface. Science. 2014;346:963–967. doi: 10.1126/science.1256917. PubMed DOI PMC

Zawadzka K., Zawadzki P., Baker R., Rajasekar K.V., Wagner F., Sherratt D.J., Arciszewska L.K. MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. Elife. 2018;7:e31522. doi: 10.7554/eLife.31522. PubMed DOI PMC

Haering C.H., Schoffnegger D., Nishino T., Helmhart W., Nasmyth K., Lowe J. Structure and Stability of Cohesin’s Smc1-Kleisin Interaction. Mol. Cell. 2004;15:951–964. doi: 10.1016/j.molcel.2004.08.030. PubMed DOI

Palecek J., Vidot S., Feng M., Doherty A.J., Lehmann A.R. The SMC5-6 DNA repair complex: Bridging of the SMC5-6 heads by the Kleisin, NSE4, and non-Kleisin subunits. J. Biol. Chem. 2006;281:36952–36959. doi: 10.1074/jbc.M608004200. PubMed DOI

Haering C.H., Gruber S. SnapShot: SMC Protein Complexes Part I. Cell. 2016;164:326. doi: 10.1016/j.cell.2015.12.026. PubMed DOI

Cuylen S., Metz J., Haering C.H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 2011;18:894–901. doi: 10.1038/nsmb.2087. PubMed DOI

Haering C.H., Farcas A.M., Arumugam P., Metson J., Nasmyth K. The cohesin ring concatenates sister DNA molecules. Nature. 2008;454:297. doi: 10.1038/nature07098. PubMed DOI

Wilhelm L., Bürmann F., Minnen A., Shin H.C., Toseland C.P., Oh B.H., Gruber S. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife. 2015;4:e06659. doi: 10.7554/eLife.06659. PubMed DOI PMC

Palecek J.J., Gruber S. Kite Proteins: A Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes. Structure. 2015;23:2183–2190. doi: 10.1016/j.str.2015.10.004. PubMed DOI

Wells J.N., Gligoris T.G., Nasmyth K.A., Marsh J.A. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. 2017;27:R17–R18. doi: 10.1016/j.cub.2016.11.050. PubMed DOI PMC

Hudson J.J.R., Bednarova K., Kozakova L., Liao C.Y., Guerineau M., Colnaghi R., Vidot S., Marek J., Bathula S.R., Lehmann A.R., et al. Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families. PLoS ONE. 2011;6:14. doi: 10.1371/journal.pone.0017270. PubMed DOI PMC

Zabrady K., Adamus M., Vondrova L., Liao C., Skoupilova H., Novakova M., Jurcisinova L., Alt A., Oliver A.W., Lehmann A.R., et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 2016;44:1064–1079. doi: 10.1093/nar/gkv1021. PubMed DOI PMC

Kschonsak M., Merkel F., Bisht S., Metz J., Rybin V., Hassler M., Haering C.H. Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes. Cell. 2017;171:588–600. doi: 10.1016/j.cell.2017.09.008. PubMed DOI PMC

Bisht K.K., Daniloski Z., Smith S. SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres. J. Cell Sci. 2013;126:3493–3503. doi: 10.1242/jcs.130872. PubMed DOI PMC

Doyle J.M., Gao J., Wang J., Yang M., Potts P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 2010;39:963–974. doi: 10.1016/j.molcel.2010.08.029. PubMed DOI PMC

Kozakova L., Vondrova L., Stejskal K., Charalabous P., Kolesar P., Lehmann A.R., Uldrijan S., Sanderson C.M., Zdrahal Z., Palecek J.J. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle. 2015;14:920–930. doi: 10.1080/15384101.2014.1000112. PubMed DOI PMC

Andrews E., Palecek J., Sergeant J., Taylor E., Lehmann A., Watts F. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 2005;25:185–196. doi: 10.1128/MCB.25.1.185-196.2005. PubMed DOI PMC

McAleenan A., Cordon-Preciado V., Clemente-Blanco A., Liu I.C., Sen N., Leonard J., Jarmuz A., Aragón L. SUMOylation of the α-kleisin subunit of cohesin is required for DNA damage-induced cohesion. Curr. Biol. 2012;22:1564–1575. doi: 10.1016/j.cub.2012.06.045. PubMed DOI

Potts P.R., Yu H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 2005;25:7021–7032. doi: 10.1128/MCB.25.16.7021-7032.2005. PubMed DOI PMC

Potts P.R. The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. DNA Repair. 2009;8:499–506. doi: 10.1016/j.dnarep.2009.01.009. PubMed DOI

Torres-Rosell J., Sunjevaric I., De Piccoli G., Sacher M., Eckert-Boulet N., Reid R., Jentsch S., Rothstein R., Aragón L., Lisby M. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 2007;9:923–931. doi: 10.1038/ncb1619. PubMed DOI

Varejão N., Ibars E., Lascorz J., Colomina N., Torres-Rosell J., Reverter D. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J. 2018;37:e98306. doi: 10.15252/embj.201798306. PubMed DOI PMC

Wu N., Kong X., Ji Z., Zeng W., Potts P.R., Yokomori K., Yu H. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev. 2012;26:1473–1485. doi: 10.1101/gad.193615.112. PubMed DOI PMC

Zhao X., Blobel G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA. 2005;102:4777–47782. doi: 10.1073/pnas.0500537102. PubMed DOI PMC

Watts F.Z., Skilton A., Ho J.C.Y., Boyd L.K., Trickey M.A.M., Gardner L., Ogi F.X., Outwin E.A. The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem. Soc. Trans. 2007;35:1379–1384. doi: 10.1042/BST0351379. PubMed DOI

Takahashi Y., Dulev S., Liu X.P., Hiller N.J., Zhao X.L., Strunnikov A. Cooperation of Sumoylated Chromosomal Proteins in rDNA Maintenance. PLoS Genet. 2008;4:12. doi: 10.1371/journal.pgen.1000215. PubMed DOI PMC

Pebernard S., Wohlschlegel J., McDonald W.H., Yates J.R., 3rd, Boddy M.N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 2006;26:1617–1630. doi: 10.1128/MCB.26.5.1617-1630.2006. PubMed DOI PMC

Räschle M., Smeenk G., Hansen R.K., Temu T., Oka Y., Hein M.Y., Nagaraj N., Long D.T., Walter J.C., Hofmann K., et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science. 2015;348:1253671. doi: 10.1126/science.1253671. PubMed DOI PMC

Yan S., Wang W., Marqués J., Mohan R., Saleh A., Durrant W.E., Song J., Dong X. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell. 2013;52:602–610. doi: 10.1016/j.molcel.2013.09.019. PubMed DOI PMC

Hazbun T.R., Malmstrom L., Anderson S., Graczyk B.J., Fox B., Riffle M., Sundin B.A., Aranda J.D., McDonald W.H., Chiu C.H., et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell. 2003;12:1353–1365. doi: 10.1016/S1097-2765(03)00476-3. PubMed DOI

Duan X., Yang Y., Chen Y.H., Arenz J., Rangi G.K., Zhao X., Ye H. Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6. J. Biol. Chem. 2009;284:8507–8515. doi: 10.1074/jbc.M809139200. PubMed DOI PMC

Ivanov D., Nasmyth K. A topological interaction between cohesin rings and a circular minichromosome. Cell. 2005;122:849–860. doi: 10.1016/j.cell.2005.07.018. PubMed DOI

Ivanov D., Nasmyth K. A physical assay for sister chromatid cohesion in vitro. Mol. Cell. 2007;27:300–310. doi: 10.1016/j.molcel.2007.07.002. PubMed DOI

Srinivasan M., Scheinost J.C., Petela N.J., Gligoris T.G., Wissler M., Ogushi S., Collier J.E., Voulgaris M., Kurze A., Chan K.L., et al. The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms. Cell. 2018;173:1508. doi: 10.1016/j.cell.2018.04.015. PubMed DOI PMC

Uhlmann F., Lottspeich F., Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400:37–42. PubMed

Hirano T., Nishiyama T., Shirahige K. Hot debate in hot springs: Report on the second international meeting on SMC proteins. Genes Cells. 2017;22:934–938. doi: 10.1111/gtc.12539. PubMed DOI

Terakawa T., Bisht S., Eeftens J.M., Dekker C., Haering C.H., Greene E.C. The condensin complex is a mechanochemical motor that translocates along DNA. Science. 2017;358:672–676. doi: 10.1126/science.aan6516. PubMed DOI PMC

Eeftens J., Dekker C. Catching DNA with hoops-biophysical approaches to clarify the mechanism of SMC proteins. Nat. Struct. Mol. Biol. 2017;24:1012–1020. doi: 10.1038/nsmb.3507. PubMed DOI

Wang X.D., Hughes A.C., Brandao H.B., Walker B., Lierz C., Cochran J.C., Oakley M.G., Kruse A.C., Rudner D.Z. In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex. Mol. Cell. 2018;71:841. doi: 10.1016/j.molcel.2018.07.006. PubMed DOI PMC

Kamada K., Barilla D. Combing Chromosomal DNA Mediated by the SMC Complex: Structure and Mechanisms. Bioessays. 2018;40:8. doi: 10.1002/bies.201700166. PubMed DOI

Yuen K.C., Gerton J.L. Taking cohesin and condensin in context. PLoS Genet. 2018;14:14. doi: 10.1371/journal.pgen.1007118. PubMed DOI PMC

Fudenberg G., Imakaev M., Lu C., Goloborodko A., Abdennur N., Mirny L.A. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016;15:2038–2049. doi: 10.1016/j.celrep.2016.04.085. PubMed DOI PMC

Goloborodko A., Imakaev M.V., Marko J.F., Mirny L. Compaction and segregation of sister chromatids via active loop extrusion. Elife. 2016;5:16. doi: 10.7554/eLife.14864. PubMed DOI PMC

Wang X.D., Brandao H.B., Le T.B.K., Laub M.T., Rudner D.Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science. 2017;355:524–527. doi: 10.1126/science.aai8982. PubMed DOI PMC

Ganji M., Shaltiel I.A., Bisht S., Kim E., Kalichava A., Haering C.H., Dekker C. Real-time imaging of DNA loop extrusion by condensin. Science. :2018. doi: 10.1126/science.aar7831. PubMed DOI PMC

Kanno T., Berta D.G., Sjögren C. The Smc5/6 Complex Is an ATP-Dependent Intermolecular DNA Linker. Cell Rep. 2015;12:1471–1482. doi: 10.1016/j.celrep.2015.07.048. PubMed DOI

Farcas A.M., Uluocak P., Helmhart W., Nasmyth K. Cohesin’s Concatenation of Sister DNAs Maintains Their Intertwining. Mol. Cell. 2011;44:97–107. doi: 10.1016/j.molcel.2011.07.034. PubMed DOI PMC

Verver D.E., Hwang G.H., Jordan P.W., Hamer G. Resolving complex chromosome structures during meiosis: Versatile deployment of Smc5/6. Chromosoma. 2016;125:15–27. doi: 10.1007/s00412-015-0518-9. PubMed DOI PMC

Lehmann A.R., Walicka M., Griffiths D.J.F., Murray J.M., Watts F.Z., McCready S., Carr A.M. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 1995;15:7067–7080. doi: 10.1128/MCB.15.12.7067. PubMed DOI PMC

McDonald W.H., Pavlova Y., Yates J.R., Boddy M.N. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. J. Biol. Chem. 2003;278:45460–45467. doi: 10.1074/jbc.M308828200. PubMed DOI

Miyabe I., Morishita T., Hishida T., Yonei S., Shinagawa H. Rhp51-dependent recombination intermediates that do not generate checkpoint signal are accumulated in Schizosaccharomyces pombe rad60 and smc5/6 mutants after release from replication arrest. Mol. Cell. Biol. 2006;26:343–353. doi: 10.1128/MCB.26.1.343-353.2006. PubMed DOI PMC

De Piccoli G., Cortes-Ledesma F., Ira G., Torres-Rosell J., Uhle S., Farmer S., Hwang J.Y., Machin F., Ceschia A., McAleenan A., et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 2006;8:1032–1034. doi: 10.1038/ncb1466. PubMed DOI PMC

Lindroos H.B., Strom L., Itoh T., Katou Y., Shirahige K., Sjogren C. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell. 2006;22:755–767. doi: 10.1016/j.molcel.2006.05.014. PubMed DOI

Potts P.R., Porteus M.H., Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 2006;25:3377–3388. doi: 10.1038/sj.emboj.7601218. PubMed DOI PMC

Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell. 2009;21:2688–2699. doi: 10.1105/tpc.108.060525. PubMed DOI PMC

Mengiste T., Revenkova E., Bechtold N., Paszkowski J. An SMC-like protein is required for efficient homologous recombination in Arabidopsis. EMBO J. 1999;18:4505–4512. doi: 10.1093/emboj/18.16.4505. PubMed DOI PMC

Stephan A.K., Kliszczak M., Dodson H., Cooley C., Morrison C.G. Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell. Biol. 2011;31:1369–1381. doi: 10.1128/MCB.00786-10. PubMed DOI PMC

Strom L., Karlsson C., Lindroos H.B., Wedahl S., Katou Y., Shirahige K., Sjogren C. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science. 2007;317:242–245. doi: 10.1126/science.1140649. PubMed DOI

Almedawar S., Colomina N., Bermúdez-López M., Pociño-Merino I., Torres-Rosell J. A SUMO-dependent step during establishment of sister chromatid cohesion. Curr. Biol. 2012;22:1576–1581. doi: 10.1016/j.cub.2012.06.046. PubMed DOI

Ampatzidou E., Irmisch A., O’Connell M.J., Murray J.M. Smc5/6 is required for repair at collapsed replication forks. Mol. Cell. Biol. 2006;26:9387–9401. doi: 10.1128/MCB.01335-06. PubMed DOI PMC

Torres-Rosell J., Machin F., Farmer S., Jarmuz A., Eydmann T., Dalgaard J.Z., Aragon L. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat. Cell Biol. 2005;7:412–419. doi: 10.1038/ncb1239. PubMed DOI

Torres-Rosell J., Machin F., Aragón L. Smc5-Smc6 complex preserves nucleolar integrity in S. cerevisiae. Cell Cycle. 2005;4:868–872. doi: 10.4161/cc.4.7.1825. PubMed DOI

Pebernard S., Schaffer L., Campbell D., Head S.R., Boddy M.N. Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J. 2008;27:3011–3023. doi: 10.1038/emboj.2008.220. PubMed DOI PMC

Menolfi D., Delamarre A., Lengronne A., Pasero P., Branzei D. Essential Roles of the Smc5/6 Complex in Replication through Natural Pausing Sites and Endogenous DNA Damage Tolerance. Mol. Cell. 2015;60:835–846. doi: 10.1016/j.molcel.2015.10.023. PubMed DOI PMC

Hwang J.Y., Smith S., Ceschia A., Torres-Rosell J., Aragon L., Myung K. Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair. 2008;7:1426–1436. doi: 10.1016/j.dnarep.2008.05.006. PubMed DOI PMC

Caridi C.P., D’Agostino C., Ryu T., Zapotoczny G., Delabaere L., Li X., Khodaverdian V.Y., Amaral N., Lin E., Rau A.R., et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559:54–60. doi: 10.1038/s41586-018-0242-8. PubMed DOI PMC

Chiolo I., Minoda A., Colmenares S.U., Polyzos A., Costes S.V., Karpen G.H. Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair. Cell. 2011;144:732–744. doi: 10.1016/j.cell.2011.02.012. PubMed DOI PMC

Amaral N., Ryu T., Li X., Chiolo I. Nuclear Dynamics of Heterochromatin Repair. Trends Genet. 2017;33:86–100. doi: 10.1016/j.tig.2016.12.004. PubMed DOI PMC

Ryu T., Spatola B., Delabaere L., Bowlin K., Hopp H., Kunitake R., Karpen G.H., Chiolo I. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biology. 2015;17:1401–1411. doi: 10.1038/ncb3258. PubMed DOI PMC

Perry J.J., Tainer J.A., Boddy M.N. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 2008;33:201–208. doi: 10.1016/j.tibs.2008.02.001. PubMed DOI

Ryu T., Bonner M.R., Chiolo I. Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery. Nucleus. 2016;7:485–497. doi: 10.1080/19491034.2016.1239683. PubMed DOI PMC

Potts P.R., Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 2007;14:581–590. doi: 10.1038/nsmb1259. PubMed DOI

Torres-Rosell J., De Piccoli G., Cordon-Preciado V., Farmer S., Jamuz A., Machin F., Pasero P., Lisby M., Haber J.E., Aragon L. Anaphase onset before complete DNA replication with intact checkpoint responses. Science. 2007;315:1411–1415. doi: 10.1126/science.1134025. PubMed DOI

Morikawa H., Morishita T., Kawane S., Iwasaki H., Carr A.M., Shinagawa H. Rad62 protein functionally and physically associates with the smc5/smc6 protein complex and is required for chromosome integrity and recombination repair in fission yeast. Mol. Cell. Biol. 2004;24:9401–9413. doi: 10.1128/MCB.24.21.9401-9413.2004. PubMed DOI PMC

Branzei D., Sollier J., Liberi G., Zhao X., Maeda D., Seki M., Enomoto T., Ohta K., Foiani M. Ubc9- and Mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell. 2006;127:509–522. doi: 10.1016/j.cell.2006.08.050. PubMed DOI

Sollier J., Driscoll R., Castellucci F., Foiani M., Jackson S.P., Branzei D. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol. Biol. Cell. 2009;20:1671–1682. doi: 10.1091/mbc.e08-08-0875. PubMed DOI PMC

Bermudez-Lopez M., Ceschia A., de Piccoli G., Colomina N., Pasero P., Aragon L., Torres-Rosell J. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 2010;38:6502–6512. doi: 10.1093/nar/gkq546. PubMed DOI PMC

Bermudez-Lopez M., Villoria M.T., Esteras M., Jarmuz A., Torres-Rosell J., Clemente-Blanco A., Aragon L. Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 2016;30:1339–1356. doi: 10.1101/gad.278275.116. PubMed DOI PMC

Bonner J.N., Zhao X.L. Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes. 2016;7:19. doi: 10.3390/genes7080048. PubMed DOI PMC

Bonner J.N., Choi K.Y., Xue X.Y., Torres N.P., Szakal B., Wei L., Wan B.B., Arter M., Matos J., Sung P., et al. Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates. Cell Rep. 2016;16:368–378. doi: 10.1016/j.celrep.2016.06.015. PubMed DOI PMC

Liang J., Li B.Z., Tan A.P., Kolodner R.D., Putnam C.D., Zhou H.L. SUMO E3 ligase Mms21 prevents spontaneous DNA damage induced genome rearrangements. PLoS Genet. 2018;14:28. doi: 10.1371/journal.pgen.1007250. PubMed DOI PMC

Chen Y.H., Choi K., Szakal B., Arenz J., Duan X., Ye H., Branzei D., Zhao X. Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc. Natl. Acad. Sci. USA. 2009;106:21252–21257. doi: 10.1073/pnas.0908258106. PubMed DOI PMC

Choi K., Szakal B., Chen Y.H., Branzei D., Zhao X. The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol. Biol. Cell. 2010;21:2306–2314. doi: 10.1091/mbc.e10-01-0050. PubMed DOI PMC

Chen Y.H., Szakal B., Castellucci F., Branzei D., Zhao X.L. DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of smc6 mutants. Mol. Biol. Cell. 2013;24:2431–2441. doi: 10.1091/mbc.e12-11-0836. PubMed DOI PMC

Chavez A., Agrawal V., Johnson F.B. Homologous recombination-dependent rescue of deficiency in the structural maintenance of chromosomes (Smc) 5/6 complex. J. Biol. Chem. 2011;286:5119–5125. doi: 10.1074/jbc.M110.201608. PubMed DOI PMC

Xue X.Y., Choi K.Y., Bonner J., Chiba T., Kwon Y., Xu Y.Y., Sanchez H., Wyman C., Niu H.Y., Zhao X.L., et al. Restriction of Replication Fork Regression Activities by a Conserved SMC Complex. Mol. Cell. 2014;56:436–445. doi: 10.1016/j.molcel.2014.09.013. PubMed DOI PMC

Xue X.Y., Choi K., Bonner J.N., Szakal B., Chen Y.H., Papusha A., Saro D., Niu H.Y., Ira G., Branzei D., et al. Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev. 2015;29:1000–1005. doi: 10.1101/gad.259143.115. PubMed DOI PMC

Peng X.P., Lim S., Li S.B., Marjavaara L., Chabes A., Zhao X.L. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet. 2018;14:20. doi: 10.1371/journal.pgen.1007129. PubMed DOI PMC

Lafuente-Barquero J., Luke-Glaser S., Graf M., Silva S., Gómez-González B., Lockhart A., Lisby M., Aguilera A., Luke B. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genet. 2017;13:e1007136. doi: 10.1371/journal.pgen.1007136. PubMed DOI PMC

Peng J., Feng W. Incision of damaged DNA in the presence of an impaired Smc5/6 complex imperils genome stability. Nucleic Acids Res. 2016;44:10216–10229. doi: 10.1093/nar/gkw720. PubMed DOI PMC

Irmisch A., Ampatzidou E., Mizuno K., O’Connell M.J., Murray J.M. Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J. 2009;28:144–155. doi: 10.1038/emboj.2008.273. PubMed DOI PMC

Wani S., Maharshi N., Kothiwal D., Mahendrawada L., Kalaivani R., Laloraya S. Interaction of the Saccharomyces cerevisiae RING-domain protein Nse1 with Nse3 and the Smc5/6 complex is required for chromosome replication and stability. Curr. Genet. 2018;64:599–617. doi: 10.1007/s00294-017-0776-6. PubMed DOI

Branzei D., Menolfi D. G2/M chromosome transactions essentially relying on Smc5/6. Cell Cycle. 2016;15:611–612. doi: 10.1080/15384101.2015.1131525. PubMed DOI PMC

van der Crabben S.N., Hennus M.P., McGregor G.A., Ritter D.I., Nagamani S.C.S., Wells O.S., Harakalova M., Chinn I.K., Alt A., Vondrova L., et al. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Investig. 2016;126:2881–2892. doi: 10.1172/JCI82890. PubMed DOI PMC

Payne F., Colnaghi R., Rocha N., Seth A., Harris J., Carpenter G., Bottomley W.E., Wheeler E., Wong S., Saudek V., et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J. Clin. Investig. 2014;124:4028–4038. doi: 10.1172/JCI73264. PubMed DOI PMC

Kegel A., Betts-Lindroos H., Kanno T., Jeppsson K., Ström L., Katou Y., Itoh T., Shirahige K., Sjögren C. Chromosome length influences replication-induced topological stress. Nature. 2011;471:392–396. doi: 10.1038/nature09791. PubMed DOI

Bustard D.E., Menolfi D., Jeppsson K., Ball L.G., Dewey S.C., Shirahige K., Sjögren C., Branzei D., Cobb J.A. During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J. Biol. Chem. 2012;287:11374–11383. doi: 10.1074/jbc.M111.336263. PubMed DOI PMC

Outwin E.A., Irmisch A., Murray J.M., O’Connell M.J. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol. Cell. Biol. 2009;29:4363–4375. doi: 10.1128/MCB.00377-09. PubMed DOI PMC

Tapia-Alveal C., Outwin E.A., Trempolec N., Dziadkowiec D., Murray J.M., O’Connell M.J. SMC complexes and topoisomerase II work together so that sister chromatids can work apart. Cell Cycle. 2010;9:2065–2070. doi: 10.4161/cc.9.11.11734. PubMed DOI

Tapia-Alveal C., Lin S.J., Yeoh A., Jabado O.J., O’Connell M.J. H2A.Z-Dependent Regulation of Cohesin Dynamics on Chromosome Arms. Mol. Cell. Biol. 2014;34:2092–2104. doi: 10.1128/MCB.00193-14. PubMed DOI PMC

Jeppsson K., Carlborg K.K., Nakato R., Berta D.G., Lilienthal I., Kanno T., Lindqvist A., Brink M.C., Dantuma N.P., Katou Y., et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 2014;10:e1004680. doi: 10.1371/journal.pgen.1004680. PubMed DOI PMC

Spell R.M., Holm C. Nature and distribution of chromosomal intertwinings in Saccharomyces-cerevisiae. Mol. Cell. Biol. 1994;14:1465–1476. doi: 10.1128/MCB.14.2.1465. PubMed DOI PMC

Bermejo R., Doksani Y., Capra T., Katou Y.M., Tanaka H., Shirahige K., Foiani M. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev. 2007;21:1921–1936. doi: 10.1101/gad.432107. PubMed DOI PMC

Kim R.A., Wang J.C. Function of DNA topoisomerases as replication swivels in Saccharomyces-cerevisiae. J. Mol. Biol. 1989;208:257–267. doi: 10.1016/0022-2836(89)90387-2. PubMed DOI

Murphy C.M., Xu Y., Li F., Nio K., Reszka-Blanco N., Li X., Wu Y., Yu Y., Xiong Y., Su L. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell. Rep. 2016;16:2846–2854. doi: 10.1016/j.celrep.2016.08.026. PubMed DOI PMC

Decorsière A., Mueller H., van Breugel P.C., Abdul F., Gerossier L., Beran R.K., Livingston C.M., Niu C., Fletcher S.P., Hantz O., et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:38–389. doi: 10.1038/nature17170. PubMed DOI

Livingston C.M., Ramakrishnan D., Strubin M., Fletcher S.P., Beran R.K. Identifying and Characterizing Interplay between Hepatitis B Virus X Protein and Smc5/6. Viruses. 2017;9:69. doi: 10.3390/v9040069. PubMed DOI PMC

Niu C., Livingston C.M., Li L., Beran R.K., Daffis S., Ramakrishnan D., Burdette D., Peiser L., Salas E., Ramos H., et al. The Smc5/6 Complex Restricts HBV when Localized to ND10 without Inducing an Innate Immune Response and Is Counteracted by the HBV X Protein Shortly after Infection. PLoS ONE. 2017;12:e0169648. doi: 10.1371/journal.pone.0169648. PubMed DOI PMC

Xu W., Ma C., Zhang Q., Zhao R., Hu D., Zhang X., Chen J., Liu F., Wu K., Liu Y., et al. PJA1 Coordinates with the SMC5/6 Complex to Restrict DNA Viruses and Episomal Genes through Interferon-independent Manner. J. Virol. 2018 doi: 10.1128/JVI.00825-18. PubMed DOI PMC

Tsuyama T., Inou K., Seki M., Seki T., Kumata Y., Kobayashi T., Kimura K., Hanaoka F., Enomoto T., Tada S. Chromatin loading of Smc5/6 is induced by DNA replication but not by DNA double-strand breaks. Biochem. Biophys. Res. Commun. 2006;351:935–939. doi: 10.1016/j.bbrc.2006.10.133. PubMed DOI

Gallego-Paez L.M., Tanaka H., Bando M., Takahashi M., Nozaki N., Nakato R., Shirahige K., Hirota T. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell. 2014;25:302–317. doi: 10.1091/mbc.e13-01-0020. PubMed DOI PMC

Pryzhkova M.V., Jordan P.W. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J. Cell Sci. 2016;129:1619–1634. doi: 10.1242/jcs.179036. PubMed DOI PMC

Pflumm M.F., Botchan M.R. Orc mutants arrest in metaphase with abnormally condensed chromosomes. Development. 2001;128:1697–1707. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...