Analysis of protein-protein interactions (PPI) is key for the understanding of most protein assemblies including structural maintenance of chromosomes (SMC) complexes. SMC complexes are composed of SMC proteins, kleisin, and kleisin-interacting subunits. These subunits interact in specific ways to constitute and regulate the closed structure of the complexes. Specifically, kleisin molecules bridge the SMC dimers and the kleisin-interacting subunits modulate stability of the bridge. Here we describe a multicomponent version of a yeast two-hybrid (Y2H) method and its application for analysis of the bridging role of the Nse4 kleisin in the SMC5/6 complex. Using this technique, we also show a stabilizing effect of KITE (kleisin-interacting tandem winged-helix element) proteins on SMC5/6.
- MeSH
- Chromosomes, Fungal physiology MeSH
- Protein Interaction Maps physiology MeSH
- Multiprotein Complexes metabolism MeSH
- Protein Subunits metabolism MeSH
- Cell Cycle Proteins metabolism MeSH
- Saccharomyces cerevisiae Proteins metabolism MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Two-Hybrid System Techniques MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
SMC/kleisin complexes form elongated annular structures, which are critical for chromosome segregation, genome maintenance, and the regulation of gene expression. We describe marked structural similarities between bacterial and eukaryotic SMC/kleisin partner proteins (designated here as "kite" proteins for kleisin interacting tandem winged-helix (WH) elements of SMC complexes). Kite proteins are integral parts of all prokaryotic SMC complexes and Smc5/6 but not cohesin and condensin. They are made up of tandem WH domains, form homo- or heterodimers via their amino-terminal WH domain, and they associate with the central part of a kleisin subunit. In placental mammals, the kite subunit NSE3 gave rise to several (>60) kite-related proteins, named MAGE, many of which encode tumor- and testis-specific antigens. Based on architectural rather than sequence similarity, we propose an adapted model for the evolution of the SMC protein complexes and discuss potential functional similarities between bacterial Smc/ScpAB and eukaryotic Smc5/6.
- MeSH
- Archaeal Proteins chemistry genetics metabolism MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Kinesins chemistry metabolism MeSH
- Conserved Sequence MeSH
- Molecular Sequence Data MeSH
- Cell Cycle Proteins chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The purpose of the present study was to elucidate signaling pathways by which insulin like-growth factor 1 (IGF1) promotes FSH-stimulated synthesis and retention of hyaluronic acid (HA) in pig oocyte-cumulus complexes (OCCs) cultured in serum-free medium. We found that IGF1 had no effects on FSH-stimulated production of cAMP and activation of protein kinase A in the OCCs. Immunoblotting with phospho-specific antibodies showed that FSH moderately phosphorylated v-akt murine thymoma viral oncogene homolog (AKT) and mitogen-activated kinase 3 and 1 (MAPK3/1) in cumulus cells. The exposure of OCCs to both FSH and IGF1 resulted in a significant (P < 0.05) increase in AKT and MAPK3/1 phosphorylation. An inhibitor of phosphoinositide-3-kinase (PIK3), LY 294002, significantly (P < 0.05) reduced the IGF1-enhanced phosphorylation of AKT, and inhibitors of AKT (SH6) and MAPK3/1 (U0126) significantly (P < 0.05) decreased the synthesis and retention of HA stimulated by concomitant exposure of OCCs to both FSH and IGF1. The IGF1-promoted synthesis of HA was not accompanied by an increase in the relative abundance of hyaluronan synthase 2 (HAS2) mRNA in the cumulus cells. We conclude that IGF1 promotes the FSH-stimulated synthesis and retention of HA in pig OCCs by PIK3/AKT- and MAPK3/1-dependent mechanisms.
- MeSH
- Cyclic AMP biosynthesis MeSH
- Financing, Organized MeSH
- Granulosa Cells cytology metabolism drug effects MeSH
- Follicle Stimulating Hormone pharmacology MeSH
- Phosphatidylinositol 3-Kinases metabolism MeSH
- Phosphorylation drug effects MeSH
- Glucuronosyltransferase genetics metabolism MeSH
- Insulin-Like Growth Factor I pharmacology MeSH
- Cells, Cultured MeSH
- Hyaluronic Acid biosynthesis metabolism MeSH
- Mitogen-Activated Protein Kinase 3 metabolism MeSH
- Oocytes metabolism drug effects MeSH
- Swine MeSH
- Cell Proliferation drug effects MeSH
- Cyclic AMP-Dependent Protein Kinases metabolism MeSH
- Proto-Oncogene Proteins c-akt metabolism MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
A family of Structural Maintenance of Chromosome (SMC) complexes is essential for key cellular processes ensuring proper cohesion, condensation and replication. They share a common SMC-kleisin architecture allowing them to embrace DNA. In SMC5/6, the NSE1 and NSE3 KITE and NSE4 kleisin subunits form a stable subcomplex that binds DNA and regulates essential processes. In addition, NSE5 and NSE6 subunits associate with the core SMC5/6 complex and recruit it to DNA repair sites. The architecture of the SMC5/6 complex is crucial for its proper functioning, and mutations within the human SMC5/6 subunits result in severe syndromes. Therefore, we aimed to analyze interactions within the human SMC5/6 complex and determine its detailed architecture. Firstly, we analyzed different parts of SMC5/6 by crosslinking and MS/MS analysis. Our data suggested domain arrangements of hNSE1-hNSE3 and orientation of hNSE4 within the hNSE1-hNSE3-hNSE4 subcomplex. The crosslinking and electron microscopic analysis of the SMC5/6 core complex showed its rod-like architecture with juxtaposed hSMC5-hSMC6 arms. Additionally, we observed fully or partially opened hSMC5-hSMC6 shapes with the hNSE1-hNSE3-hNSE4 trimer localized in the SMC head domains. To complete mapping of the human SMC5/6 complex architecture, we analyzed positions of hNSE5-hNSE6 at the hSMC5-hSMC6 arms. We showed that hNSE6 binding to hNSE5 and the coiled-coil arm of hSMC6 is mediated by a conserved FAM178 domain, which we therefore renamed CANIN (Coiled-coil SMC6 And NSE5 INteracting) domain. Interestingly, hNSE6 bound both hSMC5 and hSMC6 arms, suggesting that hNSE6 may lock the arms and regulate the dynamics of the human SMC5/6 complex.
- MeSH
- Chromosomal Proteins, Non-Histone genetics MeSH
- Humans MeSH
- Protein Multimerization genetics MeSH
- Multiprotein Complexes genetics MeSH
- Mutation MeSH
- DNA Repair genetics MeSH
- Protein Domains genetics MeSH
- Cell Cycle Proteins genetics MeSH
- Carrier Proteins genetics MeSH
- Protein Binding genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The SMC (Structural Maintenance of Chromosomes) complexes are composed of SMC dimers, kleisin and kleisin-interacting (HAWK or KITE) subunits. Mutual interactions of these subunits constitute the basal architecture of the SMC complexes. In addition, binding of ATP molecules to the SMC subunits and their hydrolysis drive dynamics of these complexes. Here, we developed new systems to follow the interactions between SMC5/6 subunits and the relative stability of the complex. First, we show that the N-terminal domain of the Nse4 kleisin molecule binds to the SMC6 neck and bridges it to the SMC5 head. Second, binding of the Nse1 and Nse3 KITE proteins to the Nse4 linker increased stability of the ATP-free SMC5/6 complex. In contrast, binding of ATP to SMC5/6 containing KITE subunits significantly decreased its stability. Elongation of the Nse4 linker partially suppressed instability of the ATP-bound complex, suggesting that the binding of the KITE proteins to the Nse4 linker constrains its limited size. Our data suggest that the KITE proteins may shape the Nse4 linker to fit the ATP-free complex optimally and to facilitate opening of the complex upon ATP binding. This mechanism suggests an important role of the KITE subunits in the dynamics of the SMC5/6 complexes.
- MeSH
- Adenosine Triphosphatases metabolism MeSH
- Nuclear Proteins genetics metabolism MeSH
- Macromolecular Substances metabolism MeSH
- Mutagenesis, Site-Directed MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- Schizosaccharomyces pombe Proteins genetics metabolism MeSH
- Schizosaccharomyces genetics metabolism MeSH
- Sequence Alignment MeSH
- Two-Hybrid System Techniques MeSH
- Carrier Proteins genetics metabolism MeSH
- Protein Binding genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions. It was suggested that hormones could bind to receptors through two binding sites on the hormone surface called site 1 and site 2. A breakthrough in knowledge came with the solution of cryoelectron microscopy (cryoEM) structures of hormone-receptor complexes. In this chapter, we document in detail the mutagenesis of insulin, IGF-1, and IGF-2 with emphasis on modifications of the hypothetical binding site 2 in the hormones, and we discuss the results of structure-activity studies in light of recent cryoEM structures of hormone complexes with IR and IGF-1R.
The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGE-homology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5-6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger-containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex.
- MeSH
- Models, Biological MeSH
- Chromatography, Liquid MeSH
- RING Finger Domains MeSH
- HEK293 Cells MeSH
- Immunoprecipitation MeSH
- Humans MeSH
- Molecular Sequence Data MeSH
- Protein Multimerization MeSH
- Multiprotein Complexes metabolism MeSH
- Neoplasm Proteins chemistry metabolism MeSH
- Peptide Fragments chemistry metabolism MeSH
- Peptides chemistry metabolism MeSH
- Amino Acid Sequence MeSH
- Tandem Mass Spectrometry MeSH
- Two-Hybrid System Techniques MeSH
- Carrier Proteins metabolism MeSH
- Ubiquitin-Protein Ligases chemistry metabolism MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The multiprotein complexes known as condensins (I and II) are major players in chromosome dynamics in mitotic and meiotic cells. Here, we report for the first time the detection of different condensin subunits from both complexes in mammalian oocytes. Using immunoblotting analysis we examined expression levels of condensin subunits during meiotic maturation of porcine oocytes. The expression of the core subunit structural maintenance of chromosomes 2 (SMC2), identical in both condensin complexes, did not change significantly during maturation. Similarly, there was no significant change in the expression of the chromosome associated protein (CAP)-H and CAP-H2 subunits, components of condensin I and II, respectively. Conversely, the expression profiles of CAP-G, CAP-D2 (condensin I) and CAP-D3 (condensin II) were more interesting. At least two isoforms of the CAP-D2 subunit were detected, along with three isoforms of the CAP-D3 and CAP-G subunits. We suggest that this diverse migration of subunit isoforms is due to post-translational modification. Earlier, it was reported that non-SMC proteins are phosphorylated by cyclin-dependent kinase 1. In the present study, we analysed the phosphorylation status of the three subunits in oocyte extracts using alkaline phosphatase treatment and we found that at least the fastest migrating form of CAP-D3 was likely to be phosphorylated in maturing porcine oocytes. In addition, the localisation of CAP-H and CAP-H2 subunits was examined using immunofluorescence staining with specific antibodies, as well as following microinjection of their enhanced green fluorescent protein-tagged mRNA into germinal vesicle-stage oocytes. CAP-H was found in the cytoplasm, whereas CAP-H2 was localised within the nucleus.
- MeSH
- Adenosine Triphosphatases metabolism physiology ultrastructure MeSH
- Chromatin physiology MeSH
- Chromosomes physiology MeSH
- DNA-Binding Proteins metabolism physiology ultrastructure MeSH
- Microscopy, Fluorescence veterinary MeSH
- Immunoblotting veterinary MeSH
- Microscopy, Confocal veterinary MeSH
- Meiosis physiology MeSH
- Multiprotein Complexes metabolism physiology ultrastructure MeSH
- Oocytes physiology MeSH
- Protein Subunits MeSH
- Protein Processing, Post-Translational MeSH
- Swine physiology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
UNLABELLED: Regression of atherosclerosis is a key aspect of preventing further coronary artery disease and understanding which cell type forms smooth muscle cells in atherosclerotic fibrous caps will aid in reducing CAD. Atherogenesis is a complex interplay of cells migrating and proliferating into the vascular wall. CD34 positive hemapoetic stem cells are believed to not transform into vascular smooth muscle cells (SMC). The current study hypothesised that there would be no evidence for CD34(+)/α SMC actin(+) cells in atherosclerotic coronary arteries. AIMS: To identify CD34+/α actin positive cells in the fibrous cap and wall of atherosclerotic plaques in the coronary artery. METHODS: Male New Zealand White rabbits were fed a diet containing 0.5% cholesterol and 1% methionine for 4 weeks, then 9 weeks of normal diet to induce regression. Immunohistochemistry was used to detect CD34(+) haematopoietic progenitor cells and α SMC actin. RESULTS: In the fibrous cap, the majority of cells were CD34(-)/α SMC actin(+) spindle shaped cells. However very rare populations of CD34(+)/α SMC actin(+) and CD34(+)/α SMC actin(-) cells were also present but these cells were not spindle shaped. CONCLUSION: Our study found that CD34(+)/α SMC actin(-) spindle shaped cells were absent from the fibrous cap. Moreover, the predominant cell population were the vascular smooth muscle cells (CD34(-)/α SMC actin(+)) but (CD34(+)/α SMC actin(+)) cells were also present. This model could be used to understand the role of each SMC population subtype to hasten atherosclerotic regression in the coronary artery.
- MeSH
- Actins metabolism MeSH
- CD3 Complex metabolism MeSH
- Plaque, Atherosclerotic pathology MeSH
- Atherosclerosis pathology MeSH
- Hematopoietic Stem Cells metabolism MeSH
- Coronary Vessels metabolism pathology MeSH
- Rabbits MeSH
- Myocytes, Smooth Muscle metabolism MeSH
- Coronary Artery Disease metabolism pathology MeSH
- Muscle, Smooth, Vascular pathology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The maintenance of genome integrity over cell divisions is critical for plant development and the correct transmission of genetic information to the progeny. A key factor involved in this process is the STRUCTURAL MAINTENANCE OF CHROMOSOME5 (SMC5) and SMC6 (SMC5/6) complex, related to the cohesin and condensin complexes that control sister chromatid alignment and chromosome condensation, respectively. Here, we characterize NON-SMC ELEMENT4 (NSE4) paralogs of the SMC5/6 complex in Arabidopsis (Arabidopsis thaliana). NSE4A is expressed in meristems and accumulates during DNA damage repair. Partial loss-of-function nse4a mutants are viable but hypersensitive to DNA damage induced by zebularine. In addition, nse4a mutants produce abnormal seeds, with noncellularized endosperm and embryos that maximally develop to the heart or torpedo stage. This phenotype resembles the defects in cohesin and condensin mutants and suggests a role for all three SMC complexes in differentiation during seed development. By contrast, NSE4B is expressed in only a few cell types, and loss-of-function mutants do not have any obvious abnormal phenotype. In summary, our study shows that the NSE4A subunit of the SMC5-SMC6 complex is essential for DNA damage repair in somatic tissues and plays a role in plant reproduction.
- MeSH
- Arabidopsis embryology genetics immunology MeSH
- Gene Duplication MeSH
- Genome, Plant MeSH
- DNA Repair * genetics MeSH
- Protein Subunits metabolism MeSH
- DNA Damage * genetics MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Pollen genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Seeds genetics metabolism MeSH
- Transcriptome genetics MeSH
- Up-Regulation genetics MeSH
- Ovule genetics MeSH
- Protein Binding MeSH
- Gene Expression Regulation, Developmental MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH