A Practical Approach to High-Throughput and Accurate Mapping-by-Sequencing in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- DNA damage repair, DNA-protein crosslinks, Forward genetics, Genetic mapping, High-throughput sequencing, Mapping-by-sequencing, SNP calling, Zebularine,
- MeSH
- Arabidopsis * genetika MeSH
- fenotyp MeSH
- genom rostlinný MeSH
- mapování chromozomů * metody MeSH
- mutace MeSH
- sekvenování celého genomu metody MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Publikační typ
- časopisecké články MeSH
Forward-directed genetic screens are extremely powerful in identifying novel genes involved in a specific biological process, including various chromatin regulatory pathways. However, the traditional ways of genetic mapping are time- and cost-demanding. Recently, the whole process was revolutionized by the development of mapping-by-sequencing (MBS) protocols. In MBS, the causal mutations and their positions within genes are identified directly by whole-genome sequencing and bioinformatics analysis of the bulk of mutant plants selected based on the mutant phenotype from a segregating population. MBS increases precision and economizes the mapping. Here, we describe a general protocol and provide practical tips on how to proceed with the mapping-by-sequencing on the example of Arabidopsis forward-directed genetic screen designed to identify mutants sensitive to a specific type of DNA damage. The described protocol is generally applicable to a wide range of genetic screens in various inbreeding species with a reference genome sequence.
Zobrazit více v PubMed
Page DR, Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3(2):124–136 PubMed DOI
Schneeberger K et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6(8):550–551 PubMed DOI
Prochazkova K et al (2022) Zebularine induces enzymatic DNA protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei. Nucleic Acids Res 50(1):244–258 PubMed DOI
Stingele J, Bellelli R, Boulton SJ (2017) Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol 18(9):563–573 PubMed DOI
Hacker L, Dorn A, Puchta H (2020) Repair of DNA-protein crosslinks in plants. DNA Repair (Amst) 87:102787 PubMed DOI
Dvorak Tomastikova E et al (2023) SMC5/6 complex-mediated SUMOylation stimulates DNA-protein crosslink repair in Arabidopsis. Plant Cell 35:1532. https://doi.org/10.1093/plcell/koad020 PubMed DOI PMC
Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat Res 134(2–3):113–142 PubMed DOI
Liu CH et al (2015) Repair of DNA damage induced by the cytidine analog Zebularine requires ATR and ATM in arabidopsis. Plant Cell 27(6):1788–1800 PubMed DOI PMC
Nowicka A et al (2020) Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J 102(1):68–84 PubMed DOI
Afgan E et al (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46(W1):W537–W544 PubMed DOI PMC
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–U54 PubMed DOI PMC
Moos K et al (2014) MiModD—mutation identification from whole-genome sequencing data on desktop PCs. 2014 [cited 2022]
Cingolani P et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6(2):80–92 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120 PubMed DOI PMC
Knaus BJ, Grunwald NJ (2017) VCFR: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour 17(1):44–53 PubMed DOI