Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae s.l
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Preprint, Journal Article
Grant support
R01 AI116811
NIAID NIH HHS - United States
PubMed
36712022
PubMed Central
PMC9882144
DOI
10.1101/2023.01.13.523889
PII: 2023.01.13.523889
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.
Centre Suisse de Recherches Scientifiques en Côte d'Ivoire 01 BP 1303 Abidjan 01 Côte d'Ivoire
Department of Biomedical Sciences University of Cape Coast Cape Coast Ghana
Tropical Infectious Diseases Research Centre 01 B P 526 Cotonou Benin
Wellcome Sanger Institute Hinxton Cambridge CB10 1SA United Kingdom
See more in PubMed
Adolfi A., Poulton B., Anthousi A., Macilwee S., Ranson H., & Lycett G. J. (2019). Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 116(51), 25764–25772. PubMed PMC
Anopheles gambiae 1000 Genomes Consortium. (2017). Genetic diversity of the African malaria vector PubMed PMC
Bass C., Denholm I., Williamson M. S., & Nauen R. (2015). The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 121, 78–87. PubMed
Bhatt S., Weiss D. J., Cameron E., Bisanzio D., Mappin B., Dalrymple U., Battle K. E., Moyes C. L., Henry A., Eckhoff P. A., Wenger E. A., Briët O., Penny M. A., Smith T. A., Bennett A., Yukich J., Eisele T. P., Griffin J. T., Fergus C. A., … Gething P. W. (2015). The effect of malaria control on PubMed PMC
Blandin S., Shiao S.-H., Moita L. F., Janse C. J., Waters A. P., Kafatos F. C., & Levashina E. A. (2004). Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell, 116(5), 661–670. PubMed
Chabi J., Van’t Hof A., N’dri L. K., Datsomor A., Okyere D., Njoroge H., Pipini D., Hadi M. P., de Souza D. K., Suzuki T., Dadzie S. K., & Jamet H. P. (2019). Rapid high throughput SYBR green assay for identifying the malaria vectors Anopheles arabiensis, Anopheles coluzzii and Anopheles gambiae s.s. Giles. PloS One, 14(4), e0215669. PubMed PMC
Choi H. W., Breman J. G., Teutsch S. M., Liu S., Hightower A. W., & Sexton J. D. (1995). The effectiveness of insecticide-impregnated bed nets in reducing cases of malaria infection: a meta-analysis of published results. The American Journal of Tropical Medicine and Hygiene, 52(5), 377–382. PubMed
Cingolani P., Platts A., Wang L. L., Coon M., Nguyen T., Wang L., Land S. J., Lu X., & Ruden D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. PubMed PMC
Cirimotich C. M., Dong Y., Garver L. S., Sim S., & Dimopoulos G. (2010). Mosquito immune defenses against Plasmodium infection. Developmental and Comparative Immunology, 34(4), 387–395. PubMed PMC
Clarkson C. S., Miles A., Harding N. J., O’Reilly A. O., Weetman D., Kwiatkowski D., Donnelly M. J., & Anopheles gambiae 1000 Genomes Consortium. (2021). The genetic architecture of target-site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii. Molecular Ecology, 30(21), 5303–5317. PubMed PMC
Clarkson C. S., Weetman D., Essandoh J., Yawson A. E., Maslen G., Manske M., Field S. G., Webster M., Antão T., MacInnis B., Kwiatkowski D., & Donnelly M. J. (2014). Adaptive introgression between PubMed PMC
Donnelly M. J., Isaacs A. T., & Weetman D. (2016). Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends in Parasitology, 32(3), 197–206. PubMed PMC
Enayati A. A., Ranson H., & Hemingway J. (2005). Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 14(1), 3–8. PubMed
Essandoh J., Yawson A. E., & Weetman D. (2013). Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae ss and Anopheles coluzzii across southern Ghana. Malaria Journal, 12(1), 1–10. PubMed PMC
Garud N. R., Messer P. W., Buzbas E. O., & Petrov D. A. (2015). Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genetics, 11(2), e1005004. PubMed PMC
Grau-Bové X., Lucas E., Pipini D., Rippon E., van ’t Hof A. E., Constant E., Dadzie S., Egyir-Yawson A., Essandoh J., Chabi J., Djogbénou L., Harding N. J., Miles A., Kwiatkowski D., Donnelly M. J., Weetman D., & Anopheles gambiae 1000 Genomes Consortium. (2021). Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genetics, 17(1), e1009253. PubMed PMC
Grau-Bové X., Tomlinson S., O’Reilly A. O., Harding N. J., Miles A., Kwiatkowski D., Donnelly M. J., Weetman D., & 1000 Genomes Consortium, A. G. (2020). Evolution of the insecticide target Rdl in African Anopheles is driven by interspecific and interkaryotypic introgression. Molecular Biology and Evolution, 37(10), 2900–2917. PubMed PMC
Grigoraki L., Cowlishaw R., Nolan T., Donnelly M., Lycett G., & Ranson H. (2021). CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes. PLoS Genetics, 17(7), e1009556. PubMed PMC
Hancock P. A., Hendriks C. J. M., Tangena J.-A., Gibson H., Hemingway J., Coleman M., Gething P. W., Cameron E., Bhatt S., & Moyes C. L. (2020). Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biology, 18(6), e3000633. PubMed PMC
Hancock P. A., Lynd A., Wiebe A., Devine M., Essandoh J., Wat’senga F., Manzambi E. Z., Agossa F., Donnelly M. J., Weetman D., & Moyes C. L. (2022). Modelling spatiotemporal trends in the frequency of genetic mutations conferring insecticide target-site resistance in African mosquito malaria vector species. BMC Biology, 20(1), 46. PubMed PMC
Hanghøj K., Moltke I., Andersen P. A., Manica A., & Korneliussen T. S. (2019). Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience, 8(5). 10.1093/gigascience/giz034 PubMed DOI PMC
Hearn J., Djoko Tagne C. S., Ibrahim S. S., Tene-Fossog B., Mugenzi L. M. J., Irving H., Riveron J. M., Weedall G. D., & Wondji C. S. (2022). Multi-omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa. Molecular Ecology, 31(13), 3642–3657. PubMed PMC
Ibrahim S. S., Muhammad A., Hearn J., Weedall G. D., Nagi S. C., Mukhtar M. M., Fadel A. N., Mugenzi L. J., Patterson E. I., Irving H., & Wondji C. S. (2022). Molecular drivers of insecticide resistance in the Sahelo-Sudanian populations of a major malaria vector. In bioRxiv (p. 2022.03.21.485146). 10.1101/2022.03.21.485146 PubMed DOI PMC
Ingham V. A., Tennessen J. A., Lucas E. R., Elg S., Yates H. C., Carson J., Guelbeogo W. M., Sagnon N. ’fale, Hughes G. L., Heinz E., Neafsey D. E., & Ranson H. (2021). Integration of whole genome sequencing and transcriptomics reveals a complex picture of the reestablishment of insecticide resistance in the major malaria vector Anopheles coluzzii. PLoS Genetics, 17(12), e1009970. PubMed PMC
Jun G., Flickinger M., Hetrick K. N., Romm J. M., Doheny K. F., Abecasis G. R., Boehnke M., & Kang H. M. (2012). Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. American Journal of Human Genetics, 91(5), 839–848. PubMed PMC
Klaus B., & Strimmer K. (2015). fdrtool: Estimation of (local) false discovery rates and higher Criticism. http://CRAN.R-project.org/package=fdrtool
Li C., Zhang Y., Yun X., Wang Y., Sang M., Liu X., Hu X., & Li B. (2014). Methuselah-like genes affect development, stress resistance, lifespan and reproduction in Tribolium castaneum. Insect Molecular Biology, 23(5), 587–597. PubMed
Lindsay S. W., Thomas M. B., & Kleinschmidt I. (2021). Threats to the effectiveness of insecticide-treated bednets for malaria control: thinking beyond insecticide resistance. The Lancet. Global Health, 9(9), e1325–e1331. PubMed
Lin Y. J., Seroude L., & Benzer S. (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science, 282(5390), 943–946. PubMed
Lucas E. R., Miles A., Harding N. J., Clarkson C. S., Lawniczak M. K. N., Kwiatkowski D. P., Weetman D., Donnelly M. J., & The Anopheles gambiae 1000 Genomes Consortium. (2019). Whole genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Research, 29, 1250–1261. PubMed PMC
Lucas E. R., Rockett K. A., Lynd A., Essandoh J., Grisales N., Kemei B., Njoroge H., Hubbart C., Rippon E. J., Morgan J., Van’t Hof A. E., Ochomo E. O., Kwiatkowski D. P., Weetman D., & Donnelly M. J. (2019). A high throughput multi-locus insecticide resistance marker panel for tracking resistance emergence and spread in PubMed PMC
Lu J., Breitwieser F. P., Thielen P., & Salzberg S. L. (2017). Bracken: estimating species abundance in metagenomics data. PeerJ Computer Science. https://peerj.com/articles/cs-104/
Lycett G. J., McLaughlin L. A., Ranson H., Hemingway J., Kafatos F. C., Loukeris T. G., & Paine M. J. I. (2006). Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Molecular Biology, 15(3), 321–327. PubMed
Main B. J., Lee Y., Collier T. C., Norris L. C., Brisco K., Fofana A., Cornel A. J., & Lanzaro G. C. (2015). Complex genome evolution in PubMed PMC
Manichaikul A., Mychaleckyj J. C., Rich S. S., Daly K., Sale M., & Chen W. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics , 26(22), 2867–2873. PubMed PMC
Martinez-Torres D., Chandre F., Williamson M. S., Darriet F., Berge J. B., Devonshire A. L., Guillet P., Pasteur N., & Pauron D. (1998). Molecular characterization of pyrethroid knockdown resistance ( PubMed
Mavridis K., Wipf N., Medves S., Erquiaga I., Müller R, & Vontas J. (2019). Rapid multiplex gene expression assays for monitoring metabolic resistance in the major malaria vector Anopheles gambiae. Parasites & Vectors, 12(1), 9. PubMed PMC
Mitchell S. N., Rigden D. J., Dowd A. J., Lu F., Wilding C. S., Weetman D., Dadzie S., Jenkins A. M., Regna K., Boko P., Djogbenou L., Muskavitch M. A. T., Ranson H., Paine M. J. I., Mayans O., & Donnelly M. J. (2014). Metabolic and target-site mechanisms combine to confer strong DDT resistance in PubMed PMC
Mugenzi L. M. J., Menze B. D., Tchouakui M., Wondji M. J., Irving H., Tchoupo M., Hearn J., Weedall G. D., Riveron J. M., & Wondji C. S. (2019). Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus. Nature Communications, 10(1), 4652. PubMed PMC
Mulamba C., Riveron J. M., Ibrahim S. S., Irving H., Barnes K. G., Mukwaya L. G., Birungi J., & Wondji C. S. (2014). Widespread pyrethroid and DDT resistance in the major malaria vector PubMed PMC
Njoroge H., Van’t Hof A., Oruni A., Pipini D., Nagi S. C., Lynd A., Lucas E. R., Tomlinson S., Grau-Bove X., McDermott D., Wat’senga F. T., Manzambi E. Z., Agossa F. R., Mokuba A., Irish S., Kabula B., Mbogo C., Bargul J., Paine M. J. I., … Donnelly M. J. (2022). Identification of a rapidly-spreading triple mutant for high-level metabolic insecticide resistance in Anopheles gambiae provides a real-time molecular diagnostic for antimalarial intervention deployment. Molecular Ecology, 31(16), 4307–4318. PubMed PMC
Oxborough R. M. (2016). Trends in US President’s Malaria Initiative-funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008-2015): urgent need for affordable, long-lasting insecticides. Malaria Journal, 15(1), 146. PubMed PMC
Riveron J. M., Irving H., Ndula M., Barnes K. G., Ibrahim S. S., Paine M. J. I., & Wondji C. S. (2013). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector PubMed PMC
Riveron J. M., Yunta C., Ibrahim S. S., Djouaka R., Irving H., Menze B. D., Ismail H. M., Hemingway J., Ranson H., Albert A., & Wondji C. S. (2014). A single mutation in the PubMed PMC
Roth G. A., Abate D., Abate K. H., Abay S. M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., & Others. (2018). Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1736–1788. PubMed PMC
Saavedra-Rodriguez K., Strode C., Flores A. E., Garcia-Luna S., Reyes-Solis G., Ranson H., Hemingway J., & Black W. C. 4th. (2014). Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. Insect Molecular Biology, 23(2), 199–215. PubMed PMC
Saddler A., Burda P.-C., & Koella J. C. (2015). Resisting infection by Plasmodium berghei increases the sensitivity of the malaria vector Anopheles gambiae to DDT. Malaria Journal, 14, 134. PubMed PMC
Santolamazza F., Mancini E., Simard F., Qi Y., Tu Z., & della Torre A. (2008). Insertion polymorphisms of SINE200 retrotransposons within speciation islands of PubMed PMC
The Anopheles Gambiae 1000 Genomes Consortium. (2021). Ag1000G phase 3 CNV data release. https://www.malariagen.net/data/ag1000g-phase3-cnv
The Anopheles gambiae 1000 Genomes Consortium. (2021). Ag1000G phase 3 SNP data release. MalariaGEN, 2021. https://www.malariagen.net/data/ag1000g-phase3-snp
Vontas J., Grigoraki L., Morgan J., Tsakireli D., Fuseini G., Segura L., Niemczura de Carvalho J., Nguema R., Weetman D., Slotman M. A., & Hemingway J. (2018). Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. Proceedings of the National Academy of Sciences, 115(18), 4619–4624. PubMed PMC
Weedall G. D., Mugenzi L. M. J., Menze B. D., Tchouakui M., Ibrahim S. S., Amvongo-Adjia N., Irving H., Wondji M. J., Tchoupo M., Djouaka R., Riveron J. M., & Wondji C. S. (2019). A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Science Translational Medicine, 11(484), eaat7386. PubMed
Weetman D., Djogbenou L. S., & Lucas E. (2018). Copy number variation (CNV) and insecticide resistance in mosquitoes: Evolving knowledge or an evolving problem? Current Opinion in Insect Science, 27, 82–88. PubMed PMC
Weetman D., Wilding C. S., Steen K., Pinto J., & Donnelly M. J. (2012). Gene Flow-Dependent Genomic Divergence between Anopheles gambiae M and S Forms. Molecular Biology and Evolution, 29(1), 279–291. PubMed PMC
Williams J., Cowlishaw R., Sanou A., Ranson H., & Grigoraki L. (2022). In vivo functional validation of the V402L voltage gated sodium channel mutation in the malaria vector An. gambiae. Pest Management Science, 78(3), 1155–1163. PubMed
World Health Organization. (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes.
Yi X., Liang Y., Huerta-Sanchez E., Jin X., Cuo Z. X. P., Pool J. E., Xu X., Jiang H., Vinckenbosch N., Korneliussen T. S., Zheng H., Liu T., He W., Li K., Luo R., Nie X., Wu H., Zhao M., Cao H., … Wang J. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329(5987), 75–78. PubMed PMC