Secretion of extracellular vesicles during ontogeny of the tapeworm Schistocephalus solidus
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články
PubMed
36722286
DOI
10.14411/fp.2023.003
PII: 2023.003
Knihovny.cz E-zdroje
- Klíčová slova
- : EVs, Cestoda, ESP, TEM, novel tegumental structures, ultrastructure,
- MeSH
- Cestoda * MeSH
- cestodózy * veterinární MeSH
- Copepoda MeSH
- extracelulární vezikuly * MeSH
- Smegmamorpha MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We provide the first ultrastructural evidence of the secretion of extracellular vesicles (EVs) across all parasitic stages of the tapeworm Schistocephalus solidus (Müller, 1776) (Cestoda: Diphyllobothriidea) using a laboratory life cycle model. We confirmed the presence of EV-like bodies in all stages examined, including the hexacanth, procercoids in the copepod, Macrocyclops albidus (Jurine, 1820), plerocercoids from the body cavity of the three-spined stickleback, Gasterosteus aculeatus Linnaeus, and adults cultivated in artificial medium. In addition, we provide description of novel tegumental structures potentially involved in EV biogenesis and the presence of unique elongated EVs similar to those previously described only in Fasciola hepatica Linnaeus, 1758 (Trematoda), Hymenolepis diminuta (Rudolphi, 1819) (Cestoda), and Trypanosoma brucei Plimmer et Bradford, 1899 (Kinetoplastida).
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Ancarola M.E., Marcilla A., Herz M., Macchiaroli N., Pérez M., Asurmendi S., Brehm K., Poncini C., Rosenzvit M., Cucher M. 2017: Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. Int. J. Parasitol. 47: 675-686. PubMed DOI
Barber I. 2013: Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends Parasitol. 29: 556-566. PubMed DOI
Barber I., Scharsack J.P. 2010: The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology 137: 411-424. PubMed DOI
Bennett A.P., de la Torre-Escudero E., Robinson M.W. 2020: Helminth genome analysis reveals conservation of extracellular vesicle biogenesis pathways but divergence of RNA loading machinery between phyla. Int. J. Parasitol. 50: 655-661. PubMed DOI
Berger C.S., Laroche J., Maaroufi H., Martin H., Moon K.M., Landry C.R., Foster L.J., Aubin-Horth N. 2021: The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit. Vectors 14: 436. PubMed DOI
Boysen A.T., Whitehead B., Stensballe A., Carnerup A., Nylander T., Nejsum P. 2020: Fluorescent labeling of helminth extracellular vesicles using an in vivo whole organism approach. Biomedicines 8: 213. PubMed DOI
Bråten T. 1968: An electron microscope study of the tegument and associated structures of the procercoid of Diphyllobothrium latum (L.). Z. Parasitenkd. 30: 95-103. PubMed DOI
Cavallero S., Bellini I., Pizzarelli A., Arcà B., D'Amelio S. 2022: A miRNAs catalogue from third-stage larvae and extracellular vesicles of Anisakis pegreffii provides new clues for host-parasite interplay. Sci. Rep. 12: 9667. PubMed DOI
Charles G.H., Orr T.S.C. 1968: Comparative fine structure of outer tegument of Ligula intestinalis and Schistocephalus solidus. Exp. Parasitol. 22: 137-149. PubMed DOI
Drurey C., Maizels R.M. 2021: Helminth extracellular vesicles: interactions with the host immune system. Mol. Immunol. 137: 124-133. PubMed DOI
Fratini F., Tamarozzi F., Macchia G., Bertuccini L., Mariconti M., Birago C., Iriarte A., Brunetti E., Cretu C.M., Akhan O., Siles-Lucas M., Díaz A., Casulli A. 2020: Proteomic analysis of plasma exosomes from cystic echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl. Trop. Dis. 14: e0008586. PubMed DOI
Grammeltvedt A.-F. 1973: Differentiation of the tegument and associated structures in Diphyllobothrium dendriticum Nitzsch (1824) (Cestoda: Pseudophyllidea). An electron microscopical study. Int. J. Parasitol. 3: 321-327. PubMed DOI
Harischandra H., Yuan W., Loghry H.J., Zamanian M., Kimber M.J. 2018: Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Negl. Trop. Dis. 12: e0006438. PubMed DOI
Hessvik N.P., Llorente A. 2018: Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75: 193-208. PubMed DOI
Hopkins C.A., Law L M., Threadgold L.T. 1978: Schistocephalus solidus: pinocytosis by the plerocercoid tegument. Exp. Parasitol. 44: 161-172. PubMed DOI
Huang B.Q., Yeung E.C. 2015: Chemical and physical fixation of cells and tissues: an overview. In: E. Yeung, C. Stasolla, M. Sumner and B. Huang. (Eds.), Plant Microtechniques and Protocols. Springer, Cham, pp. 23-43. DOI
Jakobsen P.J., Scharsack J.P., Hammerschmidt K., Deines P., Kalbe M., Milinski M. 2012: In vitro transition of Schistocephalus solidus (Cestoda) from coracidium to procercoid and from procercoid to plerocercoid. Exp. Parasitol. 130: 267-273. PubMed DOI
Jakobsen P.J., Wedekind C. 1998: Copepod reaction to odor stimuli influenced by cestode infection. Behav. Ecol. 9: 414-418. DOI
Kalbe M., Eizaguirre C., Scharsack J.P., Jakobsen P.J. 2016: Reciprocal cross infection of sticklebacks with the diphyllobothriidean cestode Schistocephalus solidus reveals consistent population differences in parasite growth and host resistance. Parasit. Vectors 9: 130. PubMed DOI
Kuperman B.I. 1988: [Functional Morphology of Lower Cestodes. Ontogenetic and Evolutionary Aspects.] Nauka, Leningrad, 167 pp. (In Russian.)
Levron C., Yoneva A., Kalbe M. 2013: Spermatological characters in the diphyllobothriidean Schistocephalus solidus (Cestoda). Acta Zool. 94: 240-247. DOI
Liang P., Mao L., Zhang S., Guo X., Liu G., Wang L., Hou J., Zheng Y., Luo X. 2019: Identification and molecular characterization of exosome-like vesicles derived from the Taenia asiatica adult worm. Acta Trop. 198: 105036. PubMed DOI
Lumsden R.D. 1975: Surface ultrastructure and cytochemistry of parasitic helminths. Exp. Parasitol. 37: 267-339. PubMed DOI
Lumsden R.D., Oaks J. A., Mueller J.F. 1974: Brush border development in the tegument of the tapeworm, Spirometra mansonoides. J. Parasitol. 60: 209-226. PubMed DOI
Marcilla A., Martin-Jaular L., Trelis M., de Menezes-Neto A., Osuna A., Bernal D., Fernandez-Becerra C., Almeida I.C., del Portillo, H.A. 2014: Extracellular vesicles in parasitic diseases. J. Extracell. Vesicles 3: 25040. PubMed DOI
Mazanec H., Koník P., Gardian Z., Kuchta R. 2021: Extracellular vesicles secreted by model tapeworm Hymenolepis diminuta: biogenesis, ultrastructure and protein composition. Int. J. Parasitol. 51: 327-332. PubMed DOI
McCaig M.L., Hopkins C.A. 1963: Studies on Schistocephalus solidus. II. Establishment and longevity in the definitive host. Exp. Parasitol. 13: 273-283. PubMed DOI
McSorley H.J., Hewitson J.P., Maizels R.M. 2013: Immunomodulation by helminth parasites: defining mechanisms and mediators. Int. J. Parasitol. 43: 301-310. PubMed DOI
Młocicki D., Świderski Z., Bruňanská M., Conn D.B. 2010: Functional ultrastructure of the hexacanth larvae in the bothriocephalidean cestode Eubothrium salvelini (Schrank, 1790) and its phylogenetic implications. Parasitol. Int. 59: 539-548. PubMed DOI
Mossallam S.F., Abou-El-Naga I.F., Abdel Bary A., Elmorsy E.A., Diab R.G. 2021: Schistosoma mansoni egg-derived extracellular vesicles: a promising vaccine candidate against murine schistosomiasis. PLoS Negl. Trop. Dis. 15: e0009866. PubMed DOI
Müller-Reichert T., Srayko M., Hyman A., O'Toole E.T., McDonald K. 2007: Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol. 79: 101-119. PubMed DOI
Robinson M.W., Hutchinson A.T., Donnelly S., Dalton J.P. 2010: Worm secretory molecules are causing alarm. Trends Parasitol. 26: 371-372. PubMed DOI
Sánchez-López C.M., Trelis M., Jara L., Cantalapiedra F., Marcilla A., Bernal D. 2020: Diversity of extracellular vesicles from different developmental stages of Fasciola hepatica. Int. J. Parasitol. 50: 663-669. PubMed DOI
Scharsack J.P., Gossens A., Franke F., Kurtz J. 2013: Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus). Fish Shellfish Immunol. 35: 1779-1787. PubMed DOI
Szempruch A.J., Sykes S.E., Kieft R., Dennison L., Becker A.C., Gartrell A., Martin W.J., Nakayasu E.S., Almeida I.C., Hajduk S.L. Harrington J.M. 2016: Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164: 246-257. PubMed DOI
Threadgold L.T., Hopkins C.A. 1981: Schistocephalus solidus and Ligula intestinalis: pinocytosis by the tegument. Exp. Parasitol. 51: 444-456. PubMed DOI
Trelis M., Sánchez-López C.M., Sánchez-Palencia L.F., Ramírez-Toledo V., Marcilla A., Bernal D. 2022: Proteomic analysis of extracellular vesicles from Fasciola hepatica hatching eggs and juveniles in culture. Front. Cell. Infect. Microbiol. 12: 903602. PubMed DOI
Urdal K., Tierney J.F., Jakobsen P.J. 1995: The tapeworm Schistocephalus solidus alters the activity and response, but not the predation susceptibility of infected copepods. J. Parasitol. 81: 330-333. PubMed DOI
Wedekind C., Strahm D., Schärer L. 1998: Evidence for strategic egg production in a hermaphroditic cestode. Parasitology 117: 373-382. PubMed DOI
Weinreich F., Kalbe M., Benesh D. P. 2014: Making the in vitro breeding of Schistocephalus solidus more flexible. Exp. Parasitol. 139: 1-5. PubMed DOI
Wititkornkul B., Hulme B.J., Tomes J.J., Allen N.R., Davis C.N., Davey S.D., Cookson A.R., Phillips H.C., Hegarty J.M., Swain M.T., Brophy P.M., Wonfor R.E., Morphew R.M. 2021: Evidence of immune modulators in the secretome of the equine tapeworm Anoplocephala perfoliata. Pathogens 10: 912. PubMed DOI
Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borras F.E., Buzas E.I., Casal E., Cappello F., Carvalho J., Colas E., Cordeiro-da Silva A., Fais S., Falcon-Perez J.M., Ghobrial I.M., Giebel B., Gimona M., Graner M., Gursel I., Gursel M., Heegaard N.H., Hendrix A., Kierulf P., Kokubun K., Kosanovic M., Kralj-Iglic V., Kramer-Albers E.M., Laitinen S., Lasser C., Lener T., Ligeti E., Line A., Lipps G., Llorente A., Lotvall J., Mancek-Keber M., Marcilla A., Mittelbrunn M., Nazarenko I., Nolte-'t Hoen E.N., Nyman T.A., O'Driscoll L., Olivan M., Oliveira C., Pallinger E., Del Portillo H.A., Reventos J., Rigau M., Rohde E., Sammar M., Sanchez-Madrid F., Santarem N., Schallmoser K., Ostenfeld M.S., Stoorvogel W., Stukelj R., Van der Grein S.G., Vasconcelos M.H., Wauben M.H., De Wever O. 2015: Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4: 27066. PubMed DOI
Yoneva A., Scholz T., Bruňanská M., Kuchta R. 2015: Vitellogenesis of diphyllobothriidean cestodes (Platyhelminthes). C. R. Biol. 33: 169-179. PubMed DOI
Yoneva A., Scholz T., Kuchta R. 2018: Comparative morphology of surface ultrastructure of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea). Invertebr. Biol. 137: 38-48. DOI