Secretion of extracellular vesicles during ontogeny of the tapeworm Schistocephalus solidus

. 2023 Jan 16 ; 70 () : . [epub] 20230116

Jazyk angličtina Země Česko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36722286

We provide the first ultrastructural evidence of the secretion of extracellular vesicles (EVs) across all parasitic stages of the tapeworm Schistocephalus solidus (Müller, 1776) (Cestoda: Diphyllobothriidea) using a laboratory life cycle model. We confirmed the presence of EV-like bodies in all stages examined, including the hexacanth, procercoids in the copepod, Macrocyclops albidus (Jurine, 1820), plerocercoids from the body cavity of the three-spined stickleback, Gasterosteus aculeatus Linnaeus, and adults cultivated in artificial medium. In addition, we provide description of novel tegumental structures potentially involved in EV biogenesis and the presence of unique elongated EVs similar to those previously described only in Fasciola hepatica Linnaeus, 1758 (Trematoda), Hymenolepis diminuta (Rudolphi, 1819) (Cestoda), and Trypanosoma brucei Plimmer et Bradford, 1899 (Kinetoplastida).

Zobrazit více v PubMed

Ancarola M.E., Marcilla A., Herz M., Macchiaroli N., Pérez M., Asurmendi S., Brehm K., Poncini C., Rosenzvit M., Cucher M. 2017: Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. Int. J. Parasitol. 47: 675-686. PubMed DOI

Barber I. 2013: Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends Parasitol. 29: 556-566. PubMed DOI

Barber I., Scharsack J.P. 2010: The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology 137: 411-424. PubMed DOI

Bennett A.P., de la Torre-Escudero E., Robinson M.W. 2020: Helminth genome analysis reveals conservation of extracellular vesicle biogenesis pathways but divergence of RNA loading machinery between phyla. Int. J. Parasitol. 50: 655-661. PubMed DOI

Berger C.S., Laroche J., Maaroufi H., Martin H., Moon K.M., Landry C.R., Foster L.J., Aubin-Horth N. 2021: The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit. Vectors 14: 436. PubMed DOI

Boysen A.T., Whitehead B., Stensballe A., Carnerup A., Nylander T., Nejsum P. 2020: Fluorescent labeling of helminth extracellular vesicles using an in vivo whole organism approach. Biomedicines 8: 213. PubMed DOI

Bråten T. 1968: An electron microscope study of the tegument and associated structures of the procercoid of Diphyllobothrium latum (L.). Z. Parasitenkd. 30: 95-103. PubMed DOI

Cavallero S., Bellini I., Pizzarelli A., Arcà B., D'Amelio S. 2022: A miRNAs catalogue from third-stage larvae and extracellular vesicles of Anisakis pegreffii provides new clues for host-parasite interplay. Sci. Rep. 12: 9667. PubMed DOI

Charles G.H., Orr T.S.C. 1968: Comparative fine structure of outer tegument of Ligula intestinalis and Schistocephalus solidus. Exp. Parasitol. 22: 137-149. PubMed DOI

Drurey C., Maizels R.M. 2021: Helminth extracellular vesicles: interactions with the host immune system. Mol. Immunol. 137: 124-133. PubMed DOI

Fratini F., Tamarozzi F., Macchia G., Bertuccini L., Mariconti M., Birago C., Iriarte A., Brunetti E., Cretu C.M., Akhan O., Siles-Lucas M., Díaz A., Casulli A. 2020: Proteomic analysis of plasma exosomes from cystic echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl. Trop. Dis. 14: e0008586. PubMed DOI

Grammeltvedt A.-F. 1973: Differentiation of the tegument and associated structures in Diphyllobothrium dendriticum Nitzsch (1824) (Cestoda: Pseudophyllidea). An electron microscopical study. Int. J. Parasitol. 3: 321-327. PubMed DOI

Harischandra H., Yuan W., Loghry H.J., Zamanian M., Kimber M.J. 2018: Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Negl. Trop. Dis. 12: e0006438. PubMed DOI

Hessvik N.P., Llorente A. 2018: Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75: 193-208. PubMed DOI

Hopkins C.A., Law L M., Threadgold L.T. 1978: Schistocephalus solidus: pinocytosis by the plerocercoid tegument. Exp. Parasitol. 44: 161-172. PubMed DOI

Huang B.Q., Yeung E.C. 2015: Chemical and physical fixation of cells and tissues: an overview. In: E. Yeung, C. Stasolla, M. Sumner and B. Huang. (Eds.), Plant Microtechniques and Protocols. Springer, Cham, pp. 23-43. DOI

Jakobsen P.J., Scharsack J.P., Hammerschmidt K., Deines P., Kalbe M., Milinski M. 2012: In vitro transition of Schistocephalus solidus (Cestoda) from coracidium to procercoid and from procercoid to plerocercoid. Exp. Parasitol. 130: 267-273. PubMed DOI

Jakobsen P.J., Wedekind C. 1998: Copepod reaction to odor stimuli influenced by cestode infection. Behav. Ecol. 9: 414-418. DOI

Kalbe M., Eizaguirre C., Scharsack J.P., Jakobsen P.J. 2016: Reciprocal cross infection of sticklebacks with the diphyllobothriidean cestode Schistocephalus solidus reveals consistent population differences in parasite growth and host resistance. Parasit. Vectors 9: 130. PubMed DOI

Kuperman B.I. 1988: [Functional Morphology of Lower Cestodes. Ontogenetic and Evolutionary Aspects.] Nauka, Leningrad, 167 pp. (In Russian.)

Levron C., Yoneva A., Kalbe M. 2013: Spermatological characters in the diphyllobothriidean Schistocephalus solidus (Cestoda). Acta Zool. 94: 240-247. DOI

Liang P., Mao L., Zhang S., Guo X., Liu G., Wang L., Hou J., Zheng Y., Luo X. 2019: Identification and molecular characterization of exosome-like vesicles derived from the Taenia asiatica adult worm. Acta Trop. 198: 105036. PubMed DOI

Lumsden R.D. 1975: Surface ultrastructure and cytochemistry of parasitic helminths. Exp. Parasitol. 37: 267-339. PubMed DOI

Lumsden R.D., Oaks J. A., Mueller J.F. 1974: Brush border development in the tegument of the tapeworm, Spirometra mansonoides. J. Parasitol. 60: 209-226. PubMed DOI

Marcilla A., Martin-Jaular L., Trelis M., de Menezes-Neto A., Osuna A., Bernal D., Fernandez-Becerra C., Almeida I.C., del Portillo, H.A. 2014: Extracellular vesicles in parasitic diseases. J. Extracell. Vesicles 3: 25040. PubMed DOI

Mazanec H., Koník P., Gardian Z., Kuchta R. 2021: Extracellular vesicles secreted by model tapeworm Hymenolepis diminuta: biogenesis, ultrastructure and protein composition. Int. J. Parasitol. 51: 327-332. PubMed DOI

McCaig M.L., Hopkins C.A. 1963: Studies on Schistocephalus solidus. II. Establishment and longevity in the definitive host. Exp. Parasitol. 13: 273-283. PubMed DOI

McSorley H.J., Hewitson J.P., Maizels R.M. 2013: Immunomodulation by helminth parasites: defining mechanisms and mediators. Int. J. Parasitol. 43: 301-310. PubMed DOI

Młocicki D., Świderski Z., Bruňanská M., Conn D.B. 2010: Functional ultrastructure of the hexacanth larvae in the bothriocephalidean cestode Eubothrium salvelini (Schrank, 1790) and its phylogenetic implications. Parasitol. Int. 59: 539-548. PubMed DOI

Mossallam S.F., Abou-El-Naga I.F., Abdel Bary A., Elmorsy E.A., Diab R.G. 2021: Schistosoma mansoni egg-derived extracellular vesicles: a promising vaccine candidate against murine schistosomiasis. PLoS Negl. Trop. Dis. 15: e0009866. PubMed DOI

Müller-Reichert T., Srayko M., Hyman A., O'Toole E.T., McDonald K. 2007: Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol. 79: 101-119. PubMed DOI

Robinson M.W., Hutchinson A.T., Donnelly S., Dalton J.P. 2010: Worm secretory molecules are causing alarm. Trends Parasitol. 26: 371-372. PubMed DOI

Sánchez-López C.M., Trelis M., Jara L., Cantalapiedra F., Marcilla A., Bernal D. 2020: Diversity of extracellular vesicles from different developmental stages of Fasciola hepatica. Int. J. Parasitol. 50: 663-669. PubMed DOI

Scharsack J.P., Gossens A., Franke F., Kurtz J. 2013: Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus). Fish Shellfish Immunol. 35: 1779-1787. PubMed DOI

Szempruch A.J., Sykes S.E., Kieft R., Dennison L., Becker A.C., Gartrell A., Martin W.J., Nakayasu E.S., Almeida I.C., Hajduk S.L. Harrington J.M. 2016: Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164: 246-257. PubMed DOI

Threadgold L.T., Hopkins C.A. 1981: Schistocephalus solidus and Ligula intestinalis: pinocytosis by the tegument. Exp. Parasitol. 51: 444-456. PubMed DOI

Trelis M., Sánchez-López C.M., Sánchez-Palencia L.F., Ramírez-Toledo V., Marcilla A., Bernal D. 2022: Proteomic analysis of extracellular vesicles from Fasciola hepatica hatching eggs and juveniles in culture. Front. Cell. Infect. Microbiol. 12: 903602. PubMed DOI

Urdal K., Tierney J.F., Jakobsen P.J. 1995: The tapeworm Schistocephalus solidus alters the activity and response, but not the predation susceptibility of infected copepods. J. Parasitol. 81: 330-333. PubMed DOI

Wedekind C., Strahm D., Schärer L. 1998: Evidence for strategic egg production in a hermaphroditic cestode. Parasitology 117: 373-382. PubMed DOI

Weinreich F., Kalbe M., Benesh D. P. 2014: Making the in vitro breeding of Schistocephalus solidus more flexible. Exp. Parasitol. 139: 1-5. PubMed DOI

Wititkornkul B., Hulme B.J., Tomes J.J., Allen N.R., Davis C.N., Davey S.D., Cookson A.R., Phillips H.C., Hegarty J.M., Swain M.T., Brophy P.M., Wonfor R.E., Morphew R.M. 2021: Evidence of immune modulators in the secretome of the equine tapeworm Anoplocephala perfoliata. Pathogens 10: 912. PubMed DOI

Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borras F.E., Buzas E.I., Casal E., Cappello F., Carvalho J., Colas E., Cordeiro-da Silva A., Fais S., Falcon-Perez J.M., Ghobrial I.M., Giebel B., Gimona M., Graner M., Gursel I., Gursel M., Heegaard N.H., Hendrix A., Kierulf P., Kokubun K., Kosanovic M., Kralj-Iglic V., Kramer-Albers E.M., Laitinen S., Lasser C., Lener T., Ligeti E., Line A., Lipps G., Llorente A., Lotvall J., Mancek-Keber M., Marcilla A., Mittelbrunn M., Nazarenko I., Nolte-'t Hoen E.N., Nyman T.A., O'Driscoll L., Olivan M., Oliveira C., Pallinger E., Del Portillo H.A., Reventos J., Rigau M., Rohde E., Sammar M., Sanchez-Madrid F., Santarem N., Schallmoser K., Ostenfeld M.S., Stoorvogel W., Stukelj R., Van der Grein S.G., Vasconcelos M.H., Wauben M.H., De Wever O. 2015: Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4: 27066. PubMed DOI

Yoneva A., Scholz T., Bruňanská M., Kuchta R. 2015: Vitellogenesis of diphyllobothriidean cestodes (Platyhelminthes). C. R. Biol. 33: 169-179. PubMed DOI

Yoneva A., Scholz T., Kuchta R. 2018: Comparative morphology of surface ultrastructure of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea). Invertebr. Biol. 137: 38-48. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...