Two new species of Hymenochaetaceae from tropical Asia and America
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36741979
PubMed Central
PMC9892452
DOI
10.3389/fcimb.2022.1100044
Knihovny.cz E-zdroje
- Klíčová slova
- Hymenochaetaceae, polypore, taxonomy, white rot, wood-decaying fungi,
- MeSH
- Basidiomycota * genetika MeSH
- DNA fungální genetika MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA genetika MeSH
- ribozomální DNA MeSH
- sekvenční analýza DNA MeSH
- spory hub MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Asie MeSH
- Názvy látek
- DNA fungální MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
Two new species in Hymenochaetaceae, Fulvifomes acaciae and Pyrrhoderma nigra, are illustrated and described from tropical Asia and America based on morphology and phylogenetic analyses. F. acaciae is characterized by perennial, pileate, and woody hard basidiomata when fresh; ash gray to dark gray, encrusted, concentrically sulcate, and irregularly cracked pileal surface; circular pores of 7-8 per mm with entire dissepiments; a dimitic hyphal system in trama and context; absence of setal element and presence of cystidioles; and broadly ellipsoid, yellowish brown, thick-walled, and smooth basidiospores measuring 5-6 μm × 4-5 μm. P. nigra is characterized by perennial and resupinate basidiomata with dark gray to almost black pore surface when fresh; small and circular pores of 7-9 per mm, a monomitic hyphal system with generative hyphae simple septate, hyphoid setae dominant in subiculum but not in tube trama, and absence of cystidia; and ellipsoid, hyaline, thin-walled basidiospores measuring 4-5 μm × 3-3.6 μm. The differences between the new species and morphologically similar and phylogenetically related species are discussed. Keys to Fulvifomes and Pyrrhoderma have also been provided.
Biology Centre of the Academy of Sciences of the Czech Republic České Budějovice Czechia
College of Pharmacy and Life Sciences Jiujiang University Jiujiang China
Faculty of Agronomy and Life Sciences Zhaotong University Zhaotong China
Zobrazit více v PubMed
Anonymous (1969). Flora of British fungi. colour identification chart (London: Her Majesty’s Stationery Office; ), 1–3.
Chen J. J., Cui B. K., Dai Y. C. (2016). Global diversity and molecular systematics of Wrightoporia s.l. (Russulales, basidiomycota). Persoonia 37, 21–36. doi: 10.3767/003158516X689666 PubMed DOI PMC
Chen J. J., Cui B. K., Zhou L. W., Korhonen K., Dai Y. C. (2015). Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, russulales). Fungal Divers. 71, 185–200. doi: 10.1007/s13225-014-0317-2 DOI
Dai Y. C. (2010). Hymenochaetaceae (Basidiomycota) in China. Fungal Divers. 45, 131–343. doi: 10.1007/s13225-010-0066-9 DOI
Dai S. J., Vlasak J., Tomsovsky (2017). Porodaedalea chinensis (Hymenochaetaceae, basidiomycota) - a new polypore from China. Mycospere 8, 986–993. doi: 10.5943/mycosphere/8/6/2 DOI
Dai Y. C., Yang Z. L., Cui B. K., Wu G., Yuan H. S., Zhou L. W., et al. . (2021). Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40, 770–805.
Du P., Cao T. X., Wu Y. D., Zhou M., Liu Z. B. (2021). Two new species of Hymenochaetaceae on Dracaena cambodiana from tropical China. MycoKeys 80, 1–17. doi: 10.3897/mycokeys.80.63997 PubMed DOI PMC
Gilbertson R. L., Ryvarden L. (1986–1987. a). North American polypores 1-2. Oslo: Fungiflora, 1–885.
Góes-Neto A., Loguercio-Leite C., Guerrero R. T. (2005). DNA Extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas 18, 19–32.
Guindon S., Gascuel O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704. doi: 10.1080/10635150390235520 PubMed DOI
Hall T. A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Hattori T., Ota Y., Sotome K. (2022). Two new species of Fulvifomes (Basidiomycota, hymenochaetaceae) on threatened or near threatened tree species in Japan. Mycoscience 63, 131–141. doi: 10.47371/mycosci.2022.04.002 PubMed DOI PMC
Imazeki R. (1966). The genus Pyrrhoderma imazeki. Trans. Japan Mycol. Soc 7, 3–11.
Jeong W. J., Lim Y. W., Lee J. S., Jung H. S. (2005). Phylogeny of Phellinus and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. J. Microbiol. biot 15, 1028–1038. doi: 10.1007/s10295-005-0024-9 DOI
Ji X. H., Wu F., Dai Y. C., Vlasák J. (2017). Two new species of Fulvifomes (Hymenochaetales, basidiomycota) from America. MycoKeys 22, 1–13. doi: 10.3897/mycokeys.22.12380 DOI
Katoh K., Rozewicki J., Yamada K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160–1166. doi: 10.1093/bib/bbx108 PubMed DOI PMC
Larsen M., Cobb-Poulle L. A. (1990). Phellinus (Hymenochaetaceae). a survey of the world taxa. Synopsis Fungorum 3, 1–206. doi: 10.2307/3760175 DOI
Maddison W. P., Maddison D. R. (2021)Mesquite: A modular system for evolutionary analysis (Accessed 4 October 2021).
Miettinen O., Larsson K. H., Spirin V. (2019). Hydnoporia, an older name for Pseudochaete and Hymenochaetopsis, and typification of the genus Hymenochaete (Hymenochaetales, basidiomycota). Fungal Syst. Evol. 4, 77–96. doi: 10.3114/fuse.2019.04.0 PubMed DOI PMC
Nilsson R. H., Tedersoo L., Abarenkov K., Ryberg M., Kristiansson E., Hartmann M., et al. . (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4, 37–63. doi: 10.3897/mycokeys.4.3606 DOI
Núñez M., Ryvarden L. (2000). East Asian Polypores 1. ganodermataceae and hymenochaetaceae. Synopsis Fungorum 13, 1–168.
Petersen J. H. (1996). The Danish mycological society’s colour-chart. Greve: Foreningen til Svampekundskabens Fremme, 1–6.
Posada D. (2008). jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. doi: 10.1093/molbev/msn083 PubMed DOI
Rajchenberg M., Pildain M. B., Bianchinotti M. V., Barroetaveña C. (2015). The phylogenetic position of poroid hymenochaetaceae (Hymenochaetales, basidiomycota) from Patagonia, Argentina. Mycologia 107, 754–767. doi: 10.3852/14-170 PubMed DOI
Rambaut A. (2018)Molecular evolution, phylogenetics and epidemiology. FigTree ver. 1.4.4 software (Accessed October 2022).
Ronquist F., Teslenko M., van der Mark P., Ayres D., Darling A., Höhna S., et al. . (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Ryvarden L., Johansen I. (1980). A preliminary polypore flora of East Africa. Fungiflora, 1–636. doi: 10.2307/3759822 DOI
Salvador-Montoya C. A., Popoff O. F., Reck M., Drechsler-Santos E. R. (2018). Taxonomic delimitation of Fulvifomes robiniae (Hymenochaetales, basidiomycota) and related species in America: F. squamosus sp. nov. Plant Syst. Evol. 304, 445–459. doi: 10.1007/s00606-017-1487-7 DOI
Stamatakis A. (2014). RAxML version 8: A tool for phylogenetic analyses and post analyses of large phylogenies. Bioinformatics 30, 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Tchoumi J. M. T., Coetzee M. P. A., Rajchenberg M., Roux J. (2020). Poroid hymenochaetaceae associated with trees showing wood-rot symptoms in the garden route national park of south Africa. Mycologia 112, 722–741. doi: 10.1080/00275514.2020.1753160 PubMed DOI
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997). The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882. doi: 10.1093/nar/25.24.4876 PubMed DOI PMC
Tomsovsky M., Kout J. (2013). Porodaedalea cedrina (Basidiomycota, agaricomycetes, hymenochaetaceae) - a new polypore from the Mediterranean area. Nova Hedwigia 96, 419–426. doi: 10.1127/0029-5035/2013/0087 DOI
Vilgalys R., Hester M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several cryptococcus species. J. Bacteriol. 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990 PubMed DOI PMC
Vu D., Groenewald M., De V. M., Gehrmann T., Stielow B., Eberhardt U., et al. . (2018). Large-Scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 92, 135–154. doi: 10.1016/j.simyco.2018.05.001 PubMed DOI PMC
Wagner T., Fischer M. (2001). Natural groups and a revised system for the European poroid hymenochaetales (Basidiomycota) supported by nLSU rDNA sequence data. Mycol. Res. 105, 773–782. doi: 10.1017/S0953756201004257 DOI
Wagner T., Fischer M. (2002). Proceedings towards a natural classification of the worldwide taxa phellinus s.l. and inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 94, 998–1016. doi: 10.1080/15572536.2003.11833156 PubMed DOI
Wagner T., Ryvarden L. (2002). Phylogeny and taxonomy of the genus Phylloporia (Hymenochaetales). Mycol. Prog. 1, 105–116. doi: 10.1007/s11557-006-0009-8 DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: A guide to methods and applications. Eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press; ), 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1 DOI
Wu F., Chen J. J., Ji X. H., Vlasák J., Dai Y. C. (2017). Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, physisporinus, oxyporus and Leucophellinus . Mycologia 109, 749–765. doi: 10.1080/00275514.2017.1405215 PubMed DOI
Wu F., Man X. W., Tohtirjap A., Dai Y. C. (2022. b). A comparison of polypore funga and species composition in forest ecosystems of China, north America, and Europe. For. Ecosyst. 9, 100051. doi: 10.1016/j.fecs.2022.100051 DOI
Wu F., Zhou L. W., Dai Y. C. (2016). Neomensularia duplicata gen. et sp. nov. (Hymenochaetales, basidiomycota) and two new combinations. Mycologia 108, 891–898. doi: 10.3852/16-020 PubMed DOI
Wu F., Zhou L. W., Vlasák J., Dai Y. C. (2022. a). Global diversity and systematics of hymenochaetaceae with poroid hymenophore. Fungal Divers. 113, 1–192. doi: 10.1007s13225-021-00496-4
Zhou L. W. (2014). Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, basidiomycota) evidenced by a combination of morphology and phylogeny. Mycoscience 55, 70–77. doi: 10.1016/j.myc.2013.05.006 DOI
Zhou L. W. (2015. a). Cylindrosporus flavidus gen. et comb. nov. (Hymenochaetales, basidiomycota) segregated from Onnia . Phytotaxa 219, 276–282. doi: 10.11646/phytotaxa.219.3.7 DOI
Zhou L. W. (2015. b). Four new species of Phylloporia (Hymenochaetales, basidiomycota) from tropical China with a key to Phylloporia species worldwide. Mycologia 107, 1184–1192. doi: 10.3852/14-254 PubMed DOI
Zhou L. W. (2015. c). Fulvifomes imbricatus and F. thailandicus (Hymenochaetales, basidiomycota): Two new species from Thailand based on morphological and molecular evidence. Mycol. Prog. 14, 1–8. doi: 10.1007/s11557-015-1116-1 DOI
Zhou L. W., Ji X. H., Vlasák J., Dai Y. C. (2018). Taxonomy and phylogeny of Pyrrhoderma: A redefinition, the segregation of Fulvoderma gen. nov. and four new species. Mycologia 110, 872–889. doi: 10.1080/00275514.2018.1474326 PubMed DOI
Zhou L. W., Vlasák J., Dai Y. C. (2016. a). Taxonomy and phylogeny of Phellinidium (Hymenochaetales, basidiomycota): A redefinition and the segregation of Coniferiporia gen. nov. for forest pathogens. Fungal Biol. 120, 988–1001. doi: 10.1016/j.funbio.2016.04.008 PubMed DOI
Zhou L. W., Vlasák J., Decock C., Assefa A., Stenlid J., Abate D., et al. . (2016. b). Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers. 77, 335–347. doi: 10.1007/s13225-015-0335-8 DOI