Toxicity Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Two Green Microalgae Species

. 2023 Jan 26 ; 24 (3) : . [epub] 20230126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36768770

Amongst per- and polyfluoroalkyl substances (PFAS) compounds, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have a high persistence in physicochemical and biological degradation; therefore, the accumulation of PFOS and PFOA can negatively affect aquatic organisms and human health. In this study, two microalgae species (Chlorella vulgaris and Scenedesmus obliquus) were exposed to different concentrations of a PFOS and PFOA mixture (0 to 10 mg L-1). With increases in the contact time (days) and the PFAS concentration (mg L-1) from 1 to 7, and 0.5 to 10, respectively, the cell viability, total chlorophyll content, and protein content decreased, and the decrease in these parameters was significantly greater in Scenedesmus obliquus. As another step in the study, the response surface methodology (RSM) was used to optimize the toxicity effects of PFAS on microalgae in a logical way, as demonstrated by the high R2 (>0.9). In another stage, a molecular docking study was performed to monitor the interaction of PFOS and PFOA with the microalgae, considering hydrolysis and the enzymes involved in oxidation-reduction reactions using individual enzymes. The analysis was conducted on carboxypeptidase in Chlorella vulgaris and on c-terminal processing protease and oxidized cytochrome c6 in Scenedesmus obliquus. For the enzyme activity, the affinity and dimensions of ligands-binding sites and ligand-binding energy were estimated in each case.

Zobrazit více v PubMed

Gagliano E., Sgroi M., Falciglia P.P., Vagliasindi F.G.A., Roccaro P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020;171:115381. doi: 10.1016/j.watres.2019.115381. PubMed DOI

Lei Y.-J., Tian Y., Sobhani Z., Naidu R., Fang C. Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chem. Eng. J. 2020;388:124215. doi: 10.1016/j.cej.2020.124215. DOI

Scheringer M., Trier X., Cousins I.T., de Voogt P., Fletcher T., Wang Z., Webster T.F. Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs) Chemosphere. 2014;114:337–339. doi: 10.1016/j.chemosphere.2014.05.044. PubMed DOI

Chowdhury N., Prabakar S., Choi H. Dependency of the photocatalytic and photochemical decomposition of per- and polyfluoroalkyl substances (PFAS) on their chain lengths, functional groups, and structural properties. Water Sci. Technol. 2021;84:3738–3754. doi: 10.2166/wst.2021.458. PubMed DOI

Xiao F., Simcik M.F., Halbach T.R., Gulliver J.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water Res. 2015;72:64–74. doi: 10.1016/j.watres.2014.09.052. PubMed DOI

Pauletto P.S., Florent M., Bandosz T.J. Insight into the mechanism of perfluorooctanesulfonic acid adsorption on highly porous media: Sizes of hydrophobic pores and the extent of multilayer formation. Carbon. 2022;191:535–545. doi: 10.1016/j.carbon.2022.02.006. DOI

Bernardini I., Matozzo V., Valsecchi S., Peruzza L., Rovere G.D., Polesello S., Iori S., Marin M.G., Fabrello J., Ciscato M., et al. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. Environ. Int. 2021;152:106484. doi: 10.1016/j.envint.2021.106484. PubMed DOI

Li Y., Liu X., Zheng X., Yang M., Gao X., Huang J., Zhang L., Fan Z. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa. Sci. Total Environ. 2021;765:144431. doi: 10.1016/j.scitotenv.2020.144431. PubMed DOI

Hu C., Luo Q., Huang Q. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus. Environ. Toxicol. Chem. 2014;33:1129–1134. doi: 10.1002/etc.2532. PubMed DOI

Baharlooeian M., Kerdgari M., Shimada Y. Ecotoxicological effects of TiO2 nanoparticulates and bulk Ti on microalgae Chaetoceros muelleri. Environ. Technol. Innov. 2021;23:101720. doi: 10.1016/j.eti.2021.101720. DOI

Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013;15:1692. doi: 10.1007/s11051-013-1692-4. DOI

Niu Z., Na J., Xu W., Wu N., Zhang Y. The effect of environmentally relevant emerging per- and polyfluoroalkyl substances on the growth and antioxidant response in marine Chlorella sp. Environ. Pollut. 2019;252:103–109. doi: 10.1016/j.envpol.2019.05.103. PubMed DOI

González-Naranjo V., Boltes K. Toxicity of ibuprofen and perfluorooctanoic acid for risk assessment of mixtures in aquatic and terrestrial environments. Int. J. Environ. Sci. Technol. 2014;11:1743–1750. doi: 10.1007/s13762-013-0379-9. DOI

Marrez D.A., Naguib M.M., Sultan Y.Y., Higazy A.M. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon. 2019;5:e01404. doi: 10.1016/j.heliyon.2019.e01404. PubMed DOI PMC

Liu X., Li Y., Zheng X., Zhang L., Lyu H., Huang H., Fan Z. Anti-oxidant mechanisms of Chlorella pyrenoidosa under acute GenX exposure. Sci. Total Environ. 2021;797:149005. doi: 10.1016/j.scitotenv.2021.149005. PubMed DOI

Wirth R., Pap B., Böjti T., Shetty P., Lakatos G., Bagi Z., Kovács K.L., Maróti G. Chlorella vulgaris and Its Phycosphere in Wastewater: Microalgae-Bacteria Interactions During Nutrient Removal. Front. Bioeng. Biotechnol. 2020;8:557572. doi: 10.3389/fbioe.2020.557572. PubMed DOI PMC

Ferreira A., Ribeiro B., Marques P.A.S.S., Ferreira A.F., Dias A.P., Pinheiro H.M., Reis A., Gouveia L. Scenedesmus obliquus mediated brewery wastewater remediation and CO 2 biofixation for green energy purposes. J. Clean. Prod. 2017;165:1316–1327. doi: 10.1016/j.jclepro.2017.07.232. DOI

Phong N.V., Oanh V.T., Yang S.Y., Choi J.S., Min B.S., Kim J.A. PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: Kinetic properties and molecular docking simulation. Int. J. Biol. Macromol. 2021;188:719–728. doi: 10.1016/j.ijbiomac.2021.08.091. PubMed DOI

Qin X., Zhong J., Wang Y. A mutant T1 lipase homology modeling, and its molecular docking and molecular dynamics simulation with fatty acids. J. Biotechnol. 2021;337:24–34. doi: 10.1016/j.jbiotec.2021.06.024. PubMed DOI

Oukarroum A., Samadani M., Dewez D. Influence of pH on the Toxicity of Silver Nanoparticles in the Green Alga Chlamydomonas acidophila. Water Air Soil Pollut. 2014;225:2038. doi: 10.1007/s11270-014-2038-2. DOI

Nagai T., Ishihara S., Yokoyama A., Iwafune T. Effects of four rice paddy herbicides on algal cell viability and the relationship with population recovery. Environ. Toxicol. Chem. 2011;30:1898–1905. doi: 10.1002/etc.582. PubMed DOI

Marchetto F., Roverso M., Righetti D., Bogialli S., Filippini F., Bergantino E., Sforza E. Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life. 2021;11:1300. doi: 10.3390/life11121300. PubMed DOI PMC

Liu X., Zheng X., Zhang L., Li J., Li Y., Huang H., Fan Z. Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. J. Hazard. Mater. 2022;437:129355. doi: 10.1016/j.jhazmat.2022.129355. PubMed DOI

Seoane M., Cid Á., Esperanza M. Toxicity of bisphenol A on marine microalgae: Single- and multispecies bioassays based on equivalent initial cell biovolume. Sci. Total Environ. 2021;767:144363. doi: 10.1016/j.scitotenv.2020.144363. PubMed DOI

El-Sheekh M.M., Hamouda R.A., Nizam A.A. Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int. Biodeterior. Biodegrad. 2013;82:67–72. doi: 10.1016/j.ibiod.2012.12.015. DOI

Wang C., Zheng Y., Li R., Yin Q., Song C. Removal of cefradine by Chlorella sp. L166 and Scenedesmus quadricauda: Toxicity investigation, degradation mechanism and metabolic pathways. Process Saf. Environ. Prot. 2022;160:632–640. doi: 10.1016/j.psep.2022.02.064. DOI

Xiong J.-Q., Kurade M.B., Jeon B.-H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environ. Pollut. 2017;226:486–493. doi: 10.1016/j.envpol.2017.04.044. PubMed DOI

Nong Q.-Y., Liu Y.-A., Qin L.-T., Liu M., Mo L.-Y., Liang Y.-P., Zeng H.-H. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere. 2021;262:127793. doi: 10.1016/j.chemosphere.2020.127793. PubMed DOI

Hu J., Wang D., Zhang N., Tang K., Bai Y., Tian Y., Li Y., Zhang X. Effects of perfluorooctanoic acid on Microcystis aeruginosa: Stress and self-adaptation mechanisms. J. Hazard. Mater. 2023;445:130396. doi: 10.1016/j.jhazmat.2022.130396. PubMed DOI

Mojiri A., Baharlooeian M., Zahed M.A. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. Int. J. Environ. Res. Public Health. 2021;18:977. doi: 10.3390/ijerph18030977. PubMed DOI PMC

Novotný J., Bazzi S., Marek R., Kozelka J. Lone-pair–π interactions: Analysis of the physical origin and biological implications. Phys. Chem. Chem. Phys. 2016;18:19472–19481. doi: 10.1039/C6CP01524G. PubMed DOI

Kahraman A., Morris R.J., Laskowski R.A., Favia A.D., Thornton J.M. On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins. Proteins Struct. Funct. Bioinform. 2010;78:1120–1136. doi: 10.1002/prot.22633. PubMed DOI

Mojiri A., Zhou J.L., Nazari V.M., Rezania S., Farraji H., Vakili M. Biochar enhanced the performance of microalgae/bacteria consortium for insecticides removal from synthetic wastewater. Process Saf. Environ. Prot. 2022;157:284–296. doi: 10.1016/j.psep.2021.11.012. DOI

Fan L., Tang J., Zhang D., Ma M., Wang Y., Han Y. Investigations on the phytotoxicity of perfluorooctanoic acid in Arabidopsis thaliana. Environ. Sci. Pollut. Res. 2020;27:1131–1143. doi: 10.1007/s11356-019-07018-5. PubMed DOI

Namasivayam S.K., Jayakumar D., Kumar R., Bharani R.A. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis. J. Coast. Life Med. 2015;3:265–272. doi: 10.12980/JCLM.3.201514B324. DOI

Xiong J.-Q., Kurade M.B., Kim J.R., Roh H.-S., Jeon B.-H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017;323:212–219. doi: 10.1016/j.jhazmat.2016.04.073. PubMed DOI

Damergi E., Schwitzguébel J.-P., Refardt D., Sharma S., Holliger C., Ludwig C. Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res. 2017;25:488–495. doi: 10.1016/j.algal.2017.05.003. DOI

Jabir T.F., Noor Abbood H.A., Salman F.S., Hafit A.Y. Influence of pH, pesticide and radiation interactions on the chemical composition of Chlorella vulgaris algae. IOP Conf. Ser. Earth Environ. Sci. 2021;722:12046. doi: 10.1088/1755-1315/722/1/012046. DOI

Yang B., Han Y., Deng Y., Li Y., Zhuo Q., Wu J. Highly efficient removal of perfluorooctanoic acid from aqueous solution by H 2 O 2 -enhanced electrocoagulation-electroflotation technique. Emerg. Contam. 2016;2:49–55. doi: 10.1016/j.emcon.2016.04.001. DOI

Mojiri A., Baharlooeian M., Kazeroon R.A., Farraji H., Lou Z. Removal of Pharmaceutical Micropollutants with Integrated Biochar and Marine Microalgae. Microorganisms. 2021;9:4. doi: 10.3390/microorganisms9010004. PubMed DOI PMC

Fang S., Li L., Cui B., Men S., Shen Y., Yang X. Structural insight into plant programmed cell death mediated by BAG proteins in Arabidopsis thaliana. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:934–945. doi: 10.1107/S0907444913003624. PubMed DOI

Kamal A., Nazari V.M., Yaseen M., Iqbal M.A., Ahamed M.B.K., Majid A.S.A., Bhatti H.N. Green synthesis of selenium-N-heterocyclic carbene compounds: Evaluation of antimicrobial and anticancer potential. Bioorg. Chem. 2019;90:103042. doi: 10.1016/j.bioorg.2019.103042. PubMed DOI

Habib A., Nazari M., Iqbal M.A., Bhatti H.N., Ahmed M.B.K., Majid A.M.S.A. Unsymmetrically substituted benzimidazolium based Silver(I)-N-heterocyclic carbene complexes: Synthesis, characterization and in vitro anticancer study against human breast cancer and colon cancer. J. Saudi Chem. Soc. 2019;23:795–808. doi: 10.1016/j.jscs.2019.03.002. DOI

Hayat K., Tariq U., Wong Q.A., Quah C.K., Majid A.S.A., Nazari V.M., Ahamed M.B.K., Iqbal M.A., Tirmizi S.A. Green synthesis of selenium based N-heterocyclic carbene compounds; structural, in-vitro anticancer and molecular docking studies. Comput. Biol. Chem. 2021;94:107567. doi: 10.1016/j.compbiolchem.2021.107567. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...