Toxicity Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Two Green Microalgae Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36768770
PubMed Central
PMC9916455
DOI
10.3390/ijms24032446
PII: ijms24032446
Knihovny.cz E-zdroje
- Klíčová slova
- PFOA, PFOS, microalgae, toxicity, water,
- MeSH
- Chlorella vulgaris * metabolismus MeSH
- fluorokarbony * toxicita metabolismus MeSH
- kapryláty toxicita MeSH
- kyseliny alkansulfonové * toxicita MeSH
- lidé MeSH
- mikrořasy * metabolismus MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorokarbony * MeSH
- kapryláty MeSH
- kyseliny alkansulfonové * MeSH
- perfluorooctane sulfonic acid MeSH Prohlížeč
- perfluorooctane MeSH Prohlížeč
- perfluorooctanoic acid MeSH Prohlížeč
Amongst per- and polyfluoroalkyl substances (PFAS) compounds, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have a high persistence in physicochemical and biological degradation; therefore, the accumulation of PFOS and PFOA can negatively affect aquatic organisms and human health. In this study, two microalgae species (Chlorella vulgaris and Scenedesmus obliquus) were exposed to different concentrations of a PFOS and PFOA mixture (0 to 10 mg L-1). With increases in the contact time (days) and the PFAS concentration (mg L-1) from 1 to 7, and 0.5 to 10, respectively, the cell viability, total chlorophyll content, and protein content decreased, and the decrease in these parameters was significantly greater in Scenedesmus obliquus. As another step in the study, the response surface methodology (RSM) was used to optimize the toxicity effects of PFAS on microalgae in a logical way, as demonstrated by the high R2 (>0.9). In another stage, a molecular docking study was performed to monitor the interaction of PFOS and PFOA with the microalgae, considering hydrolysis and the enzymes involved in oxidation-reduction reactions using individual enzymes. The analysis was conducted on carboxypeptidase in Chlorella vulgaris and on c-terminal processing protease and oxidized cytochrome c6 in Scenedesmus obliquus. For the enzyme activity, the affinity and dimensions of ligands-binding sites and ligand-binding energy were estimated in each case.
Department of Civil and Environmental Engineering University of California Davis CA 95616 USA
ORLEN UniCRE a s Revoluční 1521 84 400 01 Ústí nad Labem Czech Republic
School of Pharmacy University of 17 August 1945 Jakarta 14350 Indonesia
School of Physical and Chemical Sciences University of Canterbury Christchurch 8140 New Zealand
Zobrazit více v PubMed
Gagliano E., Sgroi M., Falciglia P.P., Vagliasindi F.G.A., Roccaro P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020;171:115381. doi: 10.1016/j.watres.2019.115381. PubMed DOI
Lei Y.-J., Tian Y., Sobhani Z., Naidu R., Fang C. Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chem. Eng. J. 2020;388:124215. doi: 10.1016/j.cej.2020.124215. DOI
Scheringer M., Trier X., Cousins I.T., de Voogt P., Fletcher T., Wang Z., Webster T.F. Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs) Chemosphere. 2014;114:337–339. doi: 10.1016/j.chemosphere.2014.05.044. PubMed DOI
Chowdhury N., Prabakar S., Choi H. Dependency of the photocatalytic and photochemical decomposition of per- and polyfluoroalkyl substances (PFAS) on their chain lengths, functional groups, and structural properties. Water Sci. Technol. 2021;84:3738–3754. doi: 10.2166/wst.2021.458. PubMed DOI
Xiao F., Simcik M.F., Halbach T.R., Gulliver J.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water Res. 2015;72:64–74. doi: 10.1016/j.watres.2014.09.052. PubMed DOI
Pauletto P.S., Florent M., Bandosz T.J. Insight into the mechanism of perfluorooctanesulfonic acid adsorption on highly porous media: Sizes of hydrophobic pores and the extent of multilayer formation. Carbon. 2022;191:535–545. doi: 10.1016/j.carbon.2022.02.006. DOI
Bernardini I., Matozzo V., Valsecchi S., Peruzza L., Rovere G.D., Polesello S., Iori S., Marin M.G., Fabrello J., Ciscato M., et al. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. Environ. Int. 2021;152:106484. doi: 10.1016/j.envint.2021.106484. PubMed DOI
Li Y., Liu X., Zheng X., Yang M., Gao X., Huang J., Zhang L., Fan Z. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa. Sci. Total Environ. 2021;765:144431. doi: 10.1016/j.scitotenv.2020.144431. PubMed DOI
Hu C., Luo Q., Huang Q. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus. Environ. Toxicol. Chem. 2014;33:1129–1134. doi: 10.1002/etc.2532. PubMed DOI
Baharlooeian M., Kerdgari M., Shimada Y. Ecotoxicological effects of TiO2 nanoparticulates and bulk Ti on microalgae Chaetoceros muelleri. Environ. Technol. Innov. 2021;23:101720. doi: 10.1016/j.eti.2021.101720. DOI
Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013;15:1692. doi: 10.1007/s11051-013-1692-4. DOI
Niu Z., Na J., Xu W., Wu N., Zhang Y. The effect of environmentally relevant emerging per- and polyfluoroalkyl substances on the growth and antioxidant response in marine Chlorella sp. Environ. Pollut. 2019;252:103–109. doi: 10.1016/j.envpol.2019.05.103. PubMed DOI
González-Naranjo V., Boltes K. Toxicity of ibuprofen and perfluorooctanoic acid for risk assessment of mixtures in aquatic and terrestrial environments. Int. J. Environ. Sci. Technol. 2014;11:1743–1750. doi: 10.1007/s13762-013-0379-9. DOI
Marrez D.A., Naguib M.M., Sultan Y.Y., Higazy A.M. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon. 2019;5:e01404. doi: 10.1016/j.heliyon.2019.e01404. PubMed DOI PMC
Liu X., Li Y., Zheng X., Zhang L., Lyu H., Huang H., Fan Z. Anti-oxidant mechanisms of Chlorella pyrenoidosa under acute GenX exposure. Sci. Total Environ. 2021;797:149005. doi: 10.1016/j.scitotenv.2021.149005. PubMed DOI
Wirth R., Pap B., Böjti T., Shetty P., Lakatos G., Bagi Z., Kovács K.L., Maróti G. Chlorella vulgaris and Its Phycosphere in Wastewater: Microalgae-Bacteria Interactions During Nutrient Removal. Front. Bioeng. Biotechnol. 2020;8:557572. doi: 10.3389/fbioe.2020.557572. PubMed DOI PMC
Ferreira A., Ribeiro B., Marques P.A.S.S., Ferreira A.F., Dias A.P., Pinheiro H.M., Reis A., Gouveia L. Scenedesmus obliquus mediated brewery wastewater remediation and CO 2 biofixation for green energy purposes. J. Clean. Prod. 2017;165:1316–1327. doi: 10.1016/j.jclepro.2017.07.232. DOI
Phong N.V., Oanh V.T., Yang S.Y., Choi J.S., Min B.S., Kim J.A. PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: Kinetic properties and molecular docking simulation. Int. J. Biol. Macromol. 2021;188:719–728. doi: 10.1016/j.ijbiomac.2021.08.091. PubMed DOI
Qin X., Zhong J., Wang Y. A mutant T1 lipase homology modeling, and its molecular docking and molecular dynamics simulation with fatty acids. J. Biotechnol. 2021;337:24–34. doi: 10.1016/j.jbiotec.2021.06.024. PubMed DOI
Oukarroum A., Samadani M., Dewez D. Influence of pH on the Toxicity of Silver Nanoparticles in the Green Alga Chlamydomonas acidophila. Water Air Soil Pollut. 2014;225:2038. doi: 10.1007/s11270-014-2038-2. DOI
Nagai T., Ishihara S., Yokoyama A., Iwafune T. Effects of four rice paddy herbicides on algal cell viability and the relationship with population recovery. Environ. Toxicol. Chem. 2011;30:1898–1905. doi: 10.1002/etc.582. PubMed DOI
Marchetto F., Roverso M., Righetti D., Bogialli S., Filippini F., Bergantino E., Sforza E. Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life. 2021;11:1300. doi: 10.3390/life11121300. PubMed DOI PMC
Liu X., Zheng X., Zhang L., Li J., Li Y., Huang H., Fan Z. Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. J. Hazard. Mater. 2022;437:129355. doi: 10.1016/j.jhazmat.2022.129355. PubMed DOI
Seoane M., Cid Á., Esperanza M. Toxicity of bisphenol A on marine microalgae: Single- and multispecies bioassays based on equivalent initial cell biovolume. Sci. Total Environ. 2021;767:144363. doi: 10.1016/j.scitotenv.2020.144363. PubMed DOI
El-Sheekh M.M., Hamouda R.A., Nizam A.A. Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int. Biodeterior. Biodegrad. 2013;82:67–72. doi: 10.1016/j.ibiod.2012.12.015. DOI
Wang C., Zheng Y., Li R., Yin Q., Song C. Removal of cefradine by Chlorella sp. L166 and Scenedesmus quadricauda: Toxicity investigation, degradation mechanism and metabolic pathways. Process Saf. Environ. Prot. 2022;160:632–640. doi: 10.1016/j.psep.2022.02.064. DOI
Xiong J.-Q., Kurade M.B., Jeon B.-H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environ. Pollut. 2017;226:486–493. doi: 10.1016/j.envpol.2017.04.044. PubMed DOI
Nong Q.-Y., Liu Y.-A., Qin L.-T., Liu M., Mo L.-Y., Liang Y.-P., Zeng H.-H. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere. 2021;262:127793. doi: 10.1016/j.chemosphere.2020.127793. PubMed DOI
Hu J., Wang D., Zhang N., Tang K., Bai Y., Tian Y., Li Y., Zhang X. Effects of perfluorooctanoic acid on Microcystis aeruginosa: Stress and self-adaptation mechanisms. J. Hazard. Mater. 2023;445:130396. doi: 10.1016/j.jhazmat.2022.130396. PubMed DOI
Mojiri A., Baharlooeian M., Zahed M.A. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. Int. J. Environ. Res. Public Health. 2021;18:977. doi: 10.3390/ijerph18030977. PubMed DOI PMC
Novotný J., Bazzi S., Marek R., Kozelka J. Lone-pair–π interactions: Analysis of the physical origin and biological implications. Phys. Chem. Chem. Phys. 2016;18:19472–19481. doi: 10.1039/C6CP01524G. PubMed DOI
Kahraman A., Morris R.J., Laskowski R.A., Favia A.D., Thornton J.M. On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins. Proteins Struct. Funct. Bioinform. 2010;78:1120–1136. doi: 10.1002/prot.22633. PubMed DOI
Mojiri A., Zhou J.L., Nazari V.M., Rezania S., Farraji H., Vakili M. Biochar enhanced the performance of microalgae/bacteria consortium for insecticides removal from synthetic wastewater. Process Saf. Environ. Prot. 2022;157:284–296. doi: 10.1016/j.psep.2021.11.012. DOI
Fan L., Tang J., Zhang D., Ma M., Wang Y., Han Y. Investigations on the phytotoxicity of perfluorooctanoic acid in Arabidopsis thaliana. Environ. Sci. Pollut. Res. 2020;27:1131–1143. doi: 10.1007/s11356-019-07018-5. PubMed DOI
Namasivayam S.K., Jayakumar D., Kumar R., Bharani R.A. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis. J. Coast. Life Med. 2015;3:265–272. doi: 10.12980/JCLM.3.201514B324. DOI
Xiong J.-Q., Kurade M.B., Kim J.R., Roh H.-S., Jeon B.-H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017;323:212–219. doi: 10.1016/j.jhazmat.2016.04.073. PubMed DOI
Damergi E., Schwitzguébel J.-P., Refardt D., Sharma S., Holliger C., Ludwig C. Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res. 2017;25:488–495. doi: 10.1016/j.algal.2017.05.003. DOI
Jabir T.F., Noor Abbood H.A., Salman F.S., Hafit A.Y. Influence of pH, pesticide and radiation interactions on the chemical composition of Chlorella vulgaris algae. IOP Conf. Ser. Earth Environ. Sci. 2021;722:12046. doi: 10.1088/1755-1315/722/1/012046. DOI
Yang B., Han Y., Deng Y., Li Y., Zhuo Q., Wu J. Highly efficient removal of perfluorooctanoic acid from aqueous solution by H 2 O 2 -enhanced electrocoagulation-electroflotation technique. Emerg. Contam. 2016;2:49–55. doi: 10.1016/j.emcon.2016.04.001. DOI
Mojiri A., Baharlooeian M., Kazeroon R.A., Farraji H., Lou Z. Removal of Pharmaceutical Micropollutants with Integrated Biochar and Marine Microalgae. Microorganisms. 2021;9:4. doi: 10.3390/microorganisms9010004. PubMed DOI PMC
Fang S., Li L., Cui B., Men S., Shen Y., Yang X. Structural insight into plant programmed cell death mediated by BAG proteins in Arabidopsis thaliana. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:934–945. doi: 10.1107/S0907444913003624. PubMed DOI
Kamal A., Nazari V.M., Yaseen M., Iqbal M.A., Ahamed M.B.K., Majid A.S.A., Bhatti H.N. Green synthesis of selenium-N-heterocyclic carbene compounds: Evaluation of antimicrobial and anticancer potential. Bioorg. Chem. 2019;90:103042. doi: 10.1016/j.bioorg.2019.103042. PubMed DOI
Habib A., Nazari M., Iqbal M.A., Bhatti H.N., Ahmed M.B.K., Majid A.M.S.A. Unsymmetrically substituted benzimidazolium based Silver(I)-N-heterocyclic carbene complexes: Synthesis, characterization and in vitro anticancer study against human breast cancer and colon cancer. J. Saudi Chem. Soc. 2019;23:795–808. doi: 10.1016/j.jscs.2019.03.002. DOI
Hayat K., Tariq U., Wong Q.A., Quah C.K., Majid A.S.A., Nazari V.M., Ahamed M.B.K., Iqbal M.A., Tirmizi S.A. Green synthesis of selenium based N-heterocyclic carbene compounds; structural, in-vitro anticancer and molecular docking studies. Comput. Biol. Chem. 2021;94:107567. doi: 10.1016/j.compbiolchem.2021.107567. PubMed DOI