Securing Optical Networks Using Quantum-Secured Blockchain: An Overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NA
Ministry of Human Resource Development
NA
University of Hradec Králové
2021R1A2C1010370
Smart Solutions in Ubiquitous Computing Environments" and the NRF 440 grant funded by the Korea government (MIST)
PubMed
36772267
PubMed Central
PMC9920734
DOI
10.3390/s23031228
PII: s23031228
Knihovny.cz E-zdroje
- Klíčová slova
- attacks, blockchain, optical networks, quantum key distribution, quantum-secured blockchain, security,
- Publikační typ
- časopisecké články MeSH
The deployment of optical network infrastructure and development of new network services are growing rapidly for beyond 5/6G networks. However, optical networks are vulnerable to several types of security threats, such as single-point failure, wormhole attacks, and Sybil attacks. Since the uptake of e-commerce and e-services has seen an unprecedented surge in recent years, especially during the COVID-19 pandemic, the security of these transactions is essential. Blockchain is one of the most promising solutions because of its decentralized and distributed ledger technology, and has been employed to protect these transactions against such attacks. However, the security of blockchain relies on the computational complexity of certain mathematical functions, and because of the evolution of quantum computers, its security may be breached in real-time in the near future. Therefore, researchers are focusing on combining quantum key distribution (QKD) with blockchain to enhance blockchain network security. This new technology is known as quantum-secured blockchain. This article describes different attacks in optical networks and provides a solution to protect networks against security attacks by employing quantum-secured blockchain in optical networks. It provides a brief overview of blockchain technology with its security loopholes, and focuses on QKD, which makes blockchain technology more robust against quantum attacks. Next, the article provides a broad view of quantum-secured blockchain technology. It presents the network architecture for the future research and development of secure and trusted optical networks using quantum-secured blockchain. The article also highlights some research challenges and opportunities.
Zobrazit více v PubMed
Skorin-Kapov N., Furdek M., Zsigmond S., Wosinska L. Physical-layer security in evolving optical networks. IEEE Commun. Mag. 2016;54:110–117. doi: 10.1109/MCOM.2016.7537185. DOI
Furdek M., Skorin-Kapov N., Zsigmond S., Wosinska L. Vulnerabilities and security issues in optical networks; Proceedings of the 16th International Conference on Transparent Optical Networks (ICTON); Graz, Austria. 6–10 July 2014; pp. 1–4.
Rawat D.B., Reddy S.R. Software defined networking architecture, security and energy efficiency: A survey. IEEE Commun. Surv. Tuts. 2016;19:325–346. doi: 10.1109/COMST.2016.2618874. DOI
Hussain M., Shah N., Amin R., Alshamrani S.S., Alotaibi A., Raza S.M. Software-Defined Networking: Categories, Analysis, and Future Directions. Sensors. 2022;22:5551. doi: 10.3390/s22155551. PubMed DOI PMC
Alvizu R., Maier G., Kukreja N., Pattavina A., Morro R., Capello A., Cavazzoni C. Comprehensive survey on T-SDN: Software-defined networking for transport networks. IEEE Commun. Surv. Tuts. 2017;19:2232–2283. doi: 10.1109/COMST.2017.2715220. DOI
Gringeri S., Bitar N., Xia T.J. Extending software defined network principles to include optical transport. IEEE Commun. Mag. 2013;51:32–40. doi: 10.1109/MCOM.2013.6476863. DOI
Ndiaye M., Hancke G.P., Abu-Mahfouz A.M. Software defined networking for improved wireless sensor network management: A survey. Sensors. 2017;17:1031. doi: 10.3390/s17051031. PubMed DOI PMC
Urrea C., Benítez D. Software-defined networking solutions, architecture and controllers for the industrial internet of things: A review. Sensors. 2021;21:6585. doi: 10.3390/s21196585. PubMed DOI PMC
Kou S., Yang H., Zheng H., Bai W., Zhang J., Wu Y. Blockchain Mechanism Based on Enhancing Consensus for Trusted Optical Networks; Proceedings of the Asia Communications and Photonics Conference (ACP); Guangzhou, China. 10–13 November 2017; pp. 1–3.
Luo G., Han Z., Lu L., Hussain M.J. Real-time and passive wormhole detection for wireless sensor networks; Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS); Hsinchu, Taiwan. 16–19 December 2014; pp. 592–599.
Yu H., Kaminsky M., Gibbons P.B., Flaxman A.D. Sybilguard: Defending against sybil attacks via social networks. IEEE/ACM Trans. Netwo. 2008;16:576–589. doi: 10.1109/TNET.2008.923723. DOI
Ali M.S., Vecchio M., Pincheira M., Dolui K., Antonelli F., Rehmani M.H. Applications of blockchains in the Internet of Things: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018;21:1676–1717. doi: 10.1109/COMST.2018.2886932. DOI
Krichen M., Ammi M., Mihoub A., Almutiq M. Blockchain for modern applications: A survey. Sensors. 2022;22:5274. doi: 10.3390/s22145274. PubMed DOI PMC
Aggarwal S., Chaudhary R., Aujla G.S., Kumar N., Choo K.K.R., Zomaya A.Y. Blockchain for smart communities: Applications, challenges and opportunities. J. Netw. Comput. Appl. 2019;144:13–48. doi: 10.1016/j.jnca.2019.06.018. DOI
Kumar S., Rathore R.S., Mahmud M., Kaiwartya O., Lloret J. BEST—Blockchain-Enabled Secure and Trusted Public Emergency Services for Smart Cities Environment. Sensors. 2022;22:5733. PubMed PMC
Rathod T., Jadav N.K., Alshehri M.D., Tanwar S., Sharma R., Felseghi R.A., Raboaca M.S. Blockchain for Future Wireless Networks: A Decade Survey. Sensors. 2022;22:4182. doi: 10.3390/s22114182. PubMed DOI PMC
Rathore H., Mohamed A., Guizani M. A survey of blockchain enabled cyber-physical systems. Sensors. 2020;20:282. doi: 10.3390/s20010282. PubMed DOI PMC
Deepa N., Pham Q.-V., Nguyen D.C., Bhattacharya S., Prabadevi B., Gadekallu T.R., Maddikunta P.K.R., Fang F., Pathirana P.N. A survey on blockchain for big data: Approaches, opportunities, and future directions. Future Gener. Comput. Syst. 2022;131:209–226. doi: 10.1016/j.future.2022.01.017. DOI
Casino F., Dasaklis T.K., Patsakis C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019;36:55–81. doi: 10.1016/j.tele.2018.11.006. DOI
Li X., Jiang P., Chen T., Luo X., Wen Q. A survey on the security of blockchain systems. Future Gener. Comput. Syst. 2020;107:841–853. doi: 10.1016/j.future.2017.08.020. DOI
Liu Z., Luong N.C., Wang W., Niyato D., Wang P., Liang Y.-C., Kim D.I. A survey on blockchain: A game theoretical perspective. IEEE Access. 2019;7:47615–47643. doi: 10.1109/ACCESS.2019.2909924. DOI
Yang R., Yu F.R., Si P., Yang Z., Zhang Y. Integrated blockchain and edge computing systems: A survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 2019;21:1508–1532. doi: 10.1109/COMST.2019.2894727. DOI
Yang H., Liang Y., Yao Q., Guo S., Yu A., Zhang J. Blockchain-based secure distributed control for software defined optical networking. IEEE China Commun. 2019;16:42–54. doi: 10.23919/JCC.2019.06.004. DOI
Ismail L., Materwala H. A review of blockchain architecture and consensus protocols: Use cases, challenges, and solutions. Symmetry. 2019;11:1198. doi: 10.3390/sym11101198. DOI
Bodkhe U., Tanwar S., Parekh K., Khanpara P., Tyagi S., Kumar N., Alazab M. Blockchain for industry 4.0: A comprehensive review. IEEE Access. 2020;8:79764–79800. doi: 10.1109/ACCESS.2020.2988579. DOI
Liu G., Fan N., Wu C.Q., Zou X. On a blockchain-based security scheme for defense against malicious nodes in vehicular ad-hoc networks. Sensors. 2022;22:5361. doi: 10.3390/s22145361. PubMed DOI PMC
Palaiokrassas G., Skoufis P., Voutyras O., Kawasaki T., Gallissot M., Azzabi R., Tsuge A., Litke A., Okoshi T., Nakazawa J., et al. Combining Blockchains, Smart Contracts, and Complex Sensors Management Platform for Hyper-Connected SmartCities: An IoT Data Marketplace Use Case. Computers. 2021;10:133. doi: 10.3390/computers10100133. DOI
McGhin T., Choo K.K.R., Liu C.Z., He D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw. Comput. Appl. 2019;135:62–75. doi: 10.1016/j.jnca.2019.02.027. DOI
Taralunga D.D., Florea B.C. A blockchain-enabled framework for mhealth systems. Sensors. 2021;21:2828. doi: 10.3390/s21082828. PubMed DOI PMC
Abbas A., Alroobaea R., Krichen M., Rubaiee S., Vimal S., Almansour F.M. Blockchain-assisted secured data management framework for health information analysis based on Internet of Medical Things. Pers. Ubiquitous Comput. 2021:1–14. doi: 10.1007/s00779-021-01583-8. DOI
Agarwal U., Rishiwal V., Tanwar S., Chaudhary R., Sharma G., Bokoro P.N., Sharma R. Blockchain Technology for Secure Supply Chain Management: A Comprehensive Review. IEEE Access. 2022;10:85493–85517. doi: 10.1109/ACCESS.2022.3194319. DOI
Zafar S., Hassan S.F.U., Mohammad A.S., Al-Ahmadi A.A., Ullah N. Implementation of a Distributed Framework for Permissioned Blockchain-Based Secure Automotive Supply Chain Management. Sensors. 2022;22:7367. doi: 10.3390/s22197367. PubMed DOI PMC
Cai Z., Liu S., Han Z., Wang R., Huang Y. A Quantum Blind Multi-Signature Method for the Industrial Blockchain. Entropy. 2021;23:1520. doi: 10.3390/e23111520. PubMed DOI PMC
Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. [(accessed on 1 December 2022)]. Available online: https://bitcoin.org/bitcoin.pdf.
Swan M. Blockchain: Blueprint for a New Economy. 1st ed. O’Reilly Media; Sebastopol, CA, USA: 2015.
Tschorsch F., Scheuermann B. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 2016;18:2084–2123. doi: 10.1109/COMST.2016.2535718. DOI
Marr B. How Blockchain Technology Could Change The World. [(accessed on 28 November 2022)];Forbes. 2016 27 Available online: https://www.forbes.com/sites/bernardmarr/2016/05/27/how-blockchain-technology-could-change-the-world/?sh=66f55186725b.
Fichera S., Sgambelluri A., Giorgetti A., Cugini F., Paolucci F. Blockchain-anchored Failure Responsibility Management in Disaggregated Optical Networks; Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC); San Diego, CA, USA. 8–12 March 2020; p. T3J–1.
Fichera S., Sgambelluri A., Paolucci F., Giorgetti A., Sambo N., Castoldi P., Cugini F. Blockchain-anchored disaggregated optical networks. IEEE J. Light. Technol. 2021;39:6357–6365. doi: 10.1109/JLT.2021.3098851. DOI
Alemany P., Vilalta R., Muñoz R., Martínez R., Casellas R. Managing network slicing resources using blockchain in a multi-domain software defined optical network scenario; Proceedings of the European Conference on Optical Communications (ECOC); Brussels, Belgium. 6–10 December 2020; pp. 1–4.
Ding S., Shen G., Pan K.X., Bose S.K., Zhang Q., Mukherjee B. Blockchain-assisted spectrum trading between elastic virtual optical networks. IEEE Netw. 2020;34:205–211. doi: 10.1109/MNET.011.2000138. DOI
Yang H., Wu Y., Zhang J., Zheng H., Ji Y., Lee Y. BlockONet: Blockchain-based trusted cloud radio over optical fiber network for 5G fronthaul; Proceedings of the Optical Fiber Communications Conference and Exposition (OFC); San Diego, CA, USA. 11–15 March 2018; p. W2A–25.
Debnath S., Linke N.M., Figgatt C., Landsman K.A., Wright K., Monroe C. Demonstration of a small programmable quantum computer with atomic qubits. Nature. 2016;536:63–66. doi: 10.1038/nature18648. PubMed DOI
Raussendorf R., Briegel H.J. A one-way quantum computer. Phys. Rev. Lett. 2001;86:5188. doi: 10.1103/PhysRevLett.86.5188. PubMed DOI
Kiktenko E.O., Pozhar N.O., Anufriev M.N., Trushechkin A.S., Yunusov R.R., Kurochkin Y.V., Lvovsky A., Fedorov A. Quantum-secured blockchain. Quantum Sci. Technol. 2018;3:035004. doi: 10.1088/2058-9565/aabc6b. DOI
Fernández-Caramés T.M., Fraga-Lamas P. Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks. IEEE Access. 2020;8:21091–21116. doi: 10.1109/ACCESS.2020.2968985. DOI
Mailloux L.O., Grimaila M.R., Hodson D.D., Baumgartner G., McLaughlin C. Performance evaluations of quantum key distribution system architectures. IEEE Secur. Priv. 2015;13:30–40. doi: 10.1109/MSP.2015.11. DOI
Bennett C., Brassard G. Quantum cryptography: Public key distribution and coin tossing; Proceedings of the International Conference on Computers, Systems & Signal Processing; Bangalore, India. 10–12 December 1984; pp. 175–179. Chapter 2.
Zhao Y., Cao Y., Yu X., Zhang J. Quantum Key Distribution (QKD) over Software-Defined Optical Networks. In: Morozov O.G., editor. Quantum Cryptography in Advanced Networks. IntechOpen; Rijeka, Croatia: 2019. DOI
Heisenberg W. The Physical Content of Quantum Kinematics and Mechanics. In: Wheeler J.A., Zurek W.H., editors. Quantum Theory and Measurement. Princeton University Press; Princeton, NJ, USA: 1927.
Heisenberg W. Physical Principles of the Quantum Theory. Dover Publications, Inc.; Mineola, NY, USA: 1930.
Wootters W.K., Zurek W.H. A single quantum cannot be cloned. Nature. 1982;299:802–803. doi: 10.1038/299802a0. DOI
Adu-Kyere A., Nigussie E., Isoaho J. Quantum Key Distribution: Modeling and Simulation through BB84 Protocol Using Python3. Sensors. 2022;22:6284. doi: 10.3390/s22166284. PubMed DOI PMC
Bennett C.H., Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014;560:7–11. doi: 10.1016/j.tcs.2014.05.025. DOI
Sharma P., Agrawal A., Bhatia V., Prakash S., Mishra A.K. Quantum key distribution secured optical networks: A survey. IEEE Open J. Commun. Soc. 2021;2:2049–2083. doi: 10.1109/OJCOMS.2021.3106659. DOI
Zhang Q., Xu F., Chen Y.A., Peng C.Z., Pan J.W. Large scale quantum key distribution: Challenges and solutions. Opt. Express. 2018;26:24260–24273. doi: 10.1364/OE.26.024260. PubMed DOI
Mafu M., Senekane M. Security of Quantum Key Distribution Protocols. In: Gnatyuk S., editor. Advanced Technologies of Quantum Key Distribution. IntechOpen; Rijeka, Croatia: 2018. DOI
Lo H.K., Curty M., Tamaki K. Secure quantum key distribution. Nat. Photon. 2014;8:595–604. doi: 10.1038/nphoton.2014.149. DOI
Diamanti E., Lo H.K., Qi B., Yuan Z. Practical challenges in quantum key distribution. NPJ Quantum Inf. 2016;2:16025. doi: 10.1038/npjqi.2016.25. DOI
Xu F., Ma X., Zhang Q., Lo H.-K., Pan J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020;92:025002. doi: 10.1103/RevModPhys.92.025002. DOI
Zhao Y., Cao Y., Wang W., Wang H., Yu X., Zhang J., Tornatore M., Wu Y., Mukherjee B. Resource allocation in optical networks secured by quantum key distribution. IEEE Commun. Mag. 2018;56:130–137. doi: 10.1109/MCOM.2018.1700656. DOI
Wang W., Yu Y., Du L. Quantum blockchain based on asymmetric quantum encryption and a stake vote consensus algorithm. Sci. Rep. 2022;12:8606. doi: 10.1038/s41598-022-12412-0. PubMed DOI PMC
Sun X., Sopek M., Wang Q., Kulicki P. Towards Quantum-Secured Permissioned Blockchain: Signature, Consensus, and Logic. Entropy. 2019;21:887. doi: 10.3390/e21090887. DOI
Rajan D., Visser M. Quantum blockchain using entanglement in time. Quantum Rep. 2019;1:3–11. doi: 10.3390/quantum1010002. DOI
Aharonov Y., Popescu S., Tollaksen J., Vaidman L. Multiple-time states and multiple-time measurements in quantum mechanics. Phys. Rev. A. 2009;79:052110. doi: 10.1103/PhysRevA.79.052110. DOI
Brukner C., Taylor S., Cheung S., Vedral V. Quantum entanglement in time. arXiv. 2004quant-ph/0402127
Ringbauer M., Costa F., Goggin M.E., White A.G., Fedrizzi A. Multi-time quantum correlations with no spatial analog. NPJ Quantum Inf. 2018;4:37. doi: 10.1038/s41534-018-0086-y. DOI
Iovane G. MuReQua Chain: Multiscale Relativistic Quantum Blockchain. IEEE Access. 2021;9:39827–39838. doi: 10.1109/ACCESS.2021.3064297. DOI
Coladangelo A., Sattath O. A quantum money solution to the blockchain scalability problem. Quantum. 2020;4:297. doi: 10.22331/q-2020-07-16-297. DOI
Abd El-Latif A.A., Abd-El-Atty B., Mehmood I., Muhammad K., Venegas-Andraca S.E., Peng J. Quantum-inspired blockchain-based cybersecurity: Securing smart edge utilities in IoT-based smart cities. Inf. Process. Manag. 2021;58:102549. doi: 10.1016/j.ipm.2021.102549. DOI
Gao Y.-L., Chen X.-B., Xu G., Yuan K.-G., Liu W., Yang Y.-X. A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Inf. Process. 2020;19:420. doi: 10.1007/s11128-020-02915-y. DOI
Qu Z., Zhang Z., Zheng M. A quantum blockchain-enabled framework for secure private electronic medical records in Internet of Medical Things. Inf. Sci. 2022;612:942–958. doi: 10.1016/j.ins.2022.09.028. DOI
Belotti M., Božić N., Pujolle G., Secci S. A Vademecum on Blockchain Technologies: When, Which, and How. IEEE Commun. Surv. Tuts. 2019;21:3796–3838. doi: 10.1109/COMST.2019.2928178. DOI
Park J.H., Park J.H. Blockchain security in cloud computing: Use cases, challenges, and solutions. Symmetry. 2017;9:164. doi: 10.3390/sym9080164. DOI
Shi N. A new proof-of-work mechanism for bitcoin. Financ. Innov. 2016;2:31. doi: 10.1186/s40854-016-0045-6. DOI
Wang W., Hoang D.T., Hu P., Xiong Z., Niyato D., Wang P., Wen Y., Kim D.I. A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access. 2019;7:22328–22370. doi: 10.1109/ACCESS.2019.2896108. DOI
Rahman A.R., Islam M.J., Rahman Z., Reza M.M., Anwar A., Mahmud M.A.P., Nasir M.K., Noor R.M. Distb-condo: Distributed blockchain-based IoT-SDN model for smart condominium. IEEE Access. 2020;8:209594–209609. doi: 10.1109/ACCESS.2020.3039113. DOI
Sengupta J., Ruj S., Bit S.D. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. J. Netw. Comput. 2020;149:102481. doi: 10.1016/j.jnca.2019.102481. DOI
Rahman A., Montieri A., Kundu D., Karim M.R., Islam M.J., Umme S., Nascita A., Pescapé A. On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives. J. Netw. Syst. Manag. 2022;30:73. doi: 10.1007/s10922-022-09682-4. DOI
Cao Y., Zhao Y., Yu X., Wu Y. Resource assignment strategy in optical networks integrated with quantum key distribution. J. Opt. Commun. Netw. 2017;9:995–1004. doi: 10.1364/JOCN.9.000995. DOI
Scarani V., Bechmann-Pasquinucci H., Cerf N.J., Dušek M., Lütkenhaus N., Peev M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009;81:1301–1350. doi: 10.1103/RevModPhys.81.1301. DOI
Ekert A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI
Inoue K., Waks E., Yamamoto Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 2002;89:037902. doi: 10.1103/PhysRevLett.89.037902. PubMed DOI
Inoue K., Waks E., Yamamoto Y. Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A. 2003;68:022317. doi: 10.1103/PhysRevA.68.022317. PubMed DOI
Bechmann-Pasquinucci H., Gisin N. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys. Rev. A. 1999;59:4238–4248. doi: 10.1103/PhysRevA.59.4238. DOI
Bennett C.H., Brassard G., Mermin N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 1992;68:557–559. doi: 10.1103/PhysRevLett.68.557. PubMed DOI
Cao Y., Zhao Y., Wu Y., Yu X., Zhang J. Time-scheduled quantum key distribution (QKD) over WDM networks. IEEE/OSA J. Lightw. Technol. 2018;36:3382–3395. doi: 10.1109/JLT.2018.2834949. DOI
Fung C.H.F., Ma X., Chau H. Practical issues in quantum-key-distribution postprocessing. Phys. Rev. A. 2010;81:012318. doi: 10.1103/PhysRevA.81.012318. DOI
Kiktenko E., Trushechkin A., Kurochkin Y., Fedorov A. Post-processing procedure for industrial quantum key distribution systems. J. Phys. Conf. Ser. 2016;741:012081. doi: 10.1088/1742-6596/741/1/012081. DOI
Vernam G.S. Cipher printing telegraph systems: For secret wire and radio telegraphic communications. IEEE J. AIEE. 1926;45:109–115.
Dworkin M., Barker E., Nechvatal J., Foti J., Bassham L., Roback E., JFD J. Advanced encryption standard (AES) Fed. Inf. Process. Stds. (NIST FIPS) 2001;197 PubMed PMC
Rivest R.L., Shamir A., Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 1978;21:120–126. doi: 10.1145/359340.359342. DOI
Schneier B. Applied Cryptography. Wiley; New York, NY, USA: 1996.
Toudeh-Fallah F., Pistoia M., Kawakura Y., Moazzami N., Kramer D.H., Woodward R.I., Sysak G., John B., Amer O., Polychroniadou A.O., et al. Paving the Way towards 800 Gbps Quantum-Secured Optical Channel Deployment in Mission-Critical Environments. arXiv. 20222202.07764
Fedorov A.K., Kiktenko E.O., Lvovsky A.I. Quantum computers put blockchain security at risk. Nature. 2018;563:465–467. doi: 10.1038/d41586-018-07449-z. PubMed DOI
Chip E., Alexander C., David P., Oleksiy P., John S., Henry Y. Current status of the DARPA quantum network. In: Donkor E.J., Pirich A.R., Brandt H.E., editors. Proceedings of the Quantum Information and Computation III. Volume 5815. International Society for Optics and Photonics, SPIE; Orlando, FL, USA: 2005. pp. 138–149. DOI
Peev M., Pacher C., Alléaume R., Barreiro C., Bouda J., Boxleitner W., Debuisschert T., Diamanti E., Dianati M., Dynes J.F., et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 2009;11:075001. doi: 10.1088/1367-2630/11/7/075001. DOI
Sasaki M., Fujiwara M., Ishizuka H., Klaus W., Wakui K., Takeoka M., Miki S., Yamashita T., Wang Z., Tanaka A., et al. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express. 2011;19:10387–10409. doi: 10.1364/OE.19.010387. PubMed DOI
Courtland R. China’s 2000-km quantum link is almost complete [News] IEEE Spectr. 2016;53:11–12.
Elliott C. Building the quantum network. N. J. Phys. 2002;4:46.1–46.12. doi: 10.1088/1367-2630/4/1/346. DOI
Razavi M., Leverrier A., Ma X., Qi B., Yuan Z. Quantum key distribution and beyond: Introduction. JOSA B. 2019;36:QKD1–QKD2. doi: 10.1364/JOSAB.36.00QKD1. DOI
Hwang W.-Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003;91:057901. doi: 10.1103/PhysRevLett.91.057901. PubMed DOI
Wang X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005;94:230503. doi: 10.1103/PhysRevLett.94.230503. PubMed DOI
Lo H.-K. Quantum key distribution with vacua or dim pulses as decoy states; Proceedings of the International Symposium onInformation Theory; ISIT, Chicago, IL, USA. 27 June–2 July 2004; p. 137.
Lo H.-K., Curty M., Qi B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012;108:130503. doi: 10.1103/PhysRevLett.108.130503. PubMed DOI
Tang Y.-L., Yin H.-L., Zhao Q., Liu H., Sun X.-X., Huang M.-Q., Zhang W.-J., Chen S.-J., Zhang L., You L.-X., et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X. 2016;6:011024. doi: 10.1103/PhysRevX.6.011024. DOI
Lucamarini M., Yuan Z.L., Dynes J.F., Shields A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature. 2018;557:400–403. doi: 10.1038/s41586-018-0066-6. PubMed DOI
Krawczyk H. Proceedings of the EUROCRYPT. Springer; Berlin/Heidelberg, Germany: 1995. New hash functions for message authentication; pp. 301–310.
Cao Y., Zhao Y., Colman-Meixner C., Yu X., Zhang J. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD) Opt. Express. 2017;25:26453–26467. doi: 10.1364/OE.25.026453. PubMed DOI
Cao Y., Zhao Y., Wang J., Yu X., Ma Z., Zhang J. SDQaaS: Software defined networking for quantum key distribution as a service. Opt. Express. 2019;27:6892–6909. doi: 10.1364/OE.27.006892. PubMed DOI
Liang Y., Yang H., Yao Q., Guo S., Yu A., Zhang J. Blockchain-based efficient recovery for secure distributed control in software defined optical networks; Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC); San Diego, CA, USA. 3–7 March 2019; p. Th1G–1.