The history and organization of the Workshop on Population and Speciation Genomics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36789285
PubMed Central
PMC9912212
DOI
10.1186/s12052-023-00182-w
PII: 182
Knihovny.cz E-zdroje
- Klíčová slova
- Bioinformatics, Course, Education, Genomics, Workshop,
- Publikační typ
- časopisecké články MeSH
With the advent of high-throughput genome sequencing, bioinformatics training has become essential for research in evolutionary biology and related fields. However, individual research groups are often not in the position to teach students about the most up-to-date methodology in the field. To fill this gap, extended bioinformatics courses have been developed by various institutions and provide intense training over the course of two or more weeks. Here, we describe our experience with the organization of a course in one of the longest-running extended bioinformatics series of workshops, the Evomics Workshop on Population and Speciation Genomics that takes place biennially in the UNESCO world heritage town of Český Krumlov, Czech Republic. We list the key ingredients that make this workshop successful in our view, explain the routine for workshop organization that we have optimized over the years, and describe the most important lessons that we have learned from it. We report the results of a survey conducted among past workshop participants that quantifies measures of effective teaching and provide examples of how the workshop setting has led to the cross-fertilisation of ideas and ultimately scientific progress. We expect that our account may be useful for other groups aiming to set up their own extended bioinformatics courses.
Department of Biology University of Oxford 11a Mansfield Road Oxford OX1 3SZ UK
Infocentrum Český Krumlov náměstí Svornosti 2 38101 Český Krumlov Czech Republic
Institute of Ecology and Evolution University of Bern Baltzerstrasse 6 3012 Bern Switzerland
Institute of Parasitology Biology Centre CAS Branis̆ovská 31 37005 Ceske Budejovice Czech Republic
Natural History Museum Unversity of Oslo Sars' gate 1 0562 Oslo Norway
Zobrazit více v PubMed
Campbell CE, Nehm RH. A critical analysis of assessment quality in genomics and bioinformatics education research. CBE—Life Sci Educ. 2013;12(3):530–541. doi: 10.1187/cbe.12-06-0073. PubMed DOI PMC
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLOS Genet. 2013;9(10):1003905. doi: 10.1371/journal.pgen.1003905. PubMed DOI PMC
Faria R, Triant D, Perdomo-Sabogal A, Overduin B, Bleidorn C, Santana CIB, Langenberger D, Dall’Olio GM, Indrischek H, Aerts J, Engelhardt J, Engelken J, Liebal K, Fasold M, Robb S, Grath S, Kolora SRR, Carvalho T, Salzburger W, Jovanovic V, Nowick K. Introducing evolutionary biologists to the analysis of big data: guidelines to organize extended bioinformatics training courses. Evol Educ Outreach. 2018;11:8. doi: 10.1186/s12052-018-0080-z. DOI
Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet. 2009;5(10):1000695. doi: 10.1371/journal.pgen.1000695. PubMed DOI PMC
Harris K, Pritchard JK. Rapid evolution of the human mutation spectrum. eLIFE. 2017;6:24284. doi: 10.7554/eLife.24284. PubMed DOI PMC
Heled J, Drummond AJ. Bayesian inference of population size history from multiple loci. BMC Evol Biol. 2008;8(1):289. doi: 10.1186/1471-2148-8-289. PubMed DOI PMC
Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. Inferring whole-genome histories in large population datasets. Nat Genet. 2019;51:1330–1338. doi: 10.1038/s41588-019-0483-y. PubMed DOI PMC
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLOS Genet. 2012;8(1):1002453. doi: 10.1371/journal.pgen.1002453. PubMed DOI PMC
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475(7357):493–496. doi: 10.1038/nature10231. PubMed DOI PMC
Malinsky M, Trucchi E, Lawson DJ, Falush D. RADpainter and fineRADstructure: population inference from RADseq data. Mol Biol Evol. 2018;35(5):1284–1290. doi: 10.1093/molbev/msy023. PubMed DOI PMC
Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet. 2008;24(3):142–149. doi: 10.1016/j.tig.2007.12.006. PubMed DOI PMC
Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands of samples. Nat Genet. 2019;51:1321–1329. doi: 10.1038/s41588-019-0484-x. PubMed DOI PMC