Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species

. 2023 Aug ; 68 (4) : 617-626. [epub] 20230215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36790684

Grantová podpora
121030200227-6 National Research Center "Kurchatov Institute"

Odkazy

PubMed 36790684
DOI 10.1007/s12223-023-01038-y
PII: 10.1007/s12223-023-01038-y
Knihovny.cz E-zdroje

Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.

Zobrazit více v PubMed

Ahmad A, Viljoen AM, Chenia HY (2014) The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 60:8–19. https://doi.org/10.1111/lam.12343 PubMed DOI

Audrain B, Farag MA, Ryu C-M, Ghigo J-M (2015a) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Revs 39:222–233. https://doi.org/10.1093/femsre/fuu013 DOI

Audrain B, Letoffe S, Ghigo JM (2015b) Airborne bacterial interactions: functions out of thin air? Front Microbiol 6:1476. https://doi.org/10.3389/fmicb.2015.01476 PubMed DOI PMC

Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P (2018) Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr Opin Microbiol 45:84–91. https://doi.org/10.1016/j.mib.2018.02.011 PubMed DOI

Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85. https://doi.org/10.4161/psb.7.1.18418 PubMed DOI PMC

Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338. https://doi.org/10.1128/AEM.68.7.3328-3338.2002 PubMed DOI PMC

Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. https://doi.org/10.1111/j.1462-2920.2011.02582.x PubMed DOI

Blom D, Fabbri C, Eberl L, Weisskopf L (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77(3):1000–1008. https://doi.org/10.1128/AEM.01968-10 PubMed DOI

Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704. https://doi.org/10.1111/j.1758-2229.2011.00284.x PubMed DOI

Chung J, Song GC, Ryu CM (2016) Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687. https://doi.org/10.1007/s11103-015-0344-8 PubMed DOI

Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierik R, Mumm R, Carrion VJ, Raaijmakers JM (2017) Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front Plant Sci 8:1262. https://doi.org/10.3389/fpls.2017.01262 PubMed DOI PMC

Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainshtein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341–352. https://doi.org/10.1111/j.1365-2672.2010.04891.x PubMed DOI

Demidyuk IV, Kalashnikov AE, Gromova TY, Gasanov EV, Safina DR, Zabolotskaya MV, Rudenskaya GN, Kostrov SV (2006) Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor. Protein Expr Purif 47(2):551–561. https://doi.org/10.1016/j.pep.2005.12.005

Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. https://doi.org/10.1007/s10886-012-0135-5 PubMed DOI

Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Revs 55:561–585. https://doi.org/10.1128/mr.55.4.561-585.1991 DOI

Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75. https://doi.org/10.1016/j.micres.2018.01.002 PubMed DOI

Imlay JA (2015) Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol 69:93–108. https://doi.org/10.1146/annurev-micro-091014-104322 PubMed DOI PMC

Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. https://doi.org/10.1007/s00253-008-1760-3 PubMed DOI

Kang BR, Anderson AJ, Kim YC (2019) Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Can J Microbiol 65(3):185–190. https://doi.org/10.1139/cjm-2018-0372 PubMed DOI

Kotova VY, Manukhov IV, Zavilgelskii GB (2010) Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl Biochem Microbiol 46:781–788. https://doi.org/10.1134/S0003683810080089 DOI

Moisan K, Cordovez V, van de Zande EM, Raaijmakers JM, Dicke M, Lucas-Barbosa D (2019) Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia 190:589–604. https://doi.org/10.1007/s00442-019-04433-w PubMed DOI PMC

Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004). The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186(15):4986–4993. https://doi.org/10.1128/JB.186.15.4986-4993.2004

Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell Environ 40:2042–2067. https://doi.org/10.1111/pce.13011 PubMed DOI

Piechulla B, Lemfack MC, Magnus N (2020) Chapter 2. Bioactive bacterial volatiles: an overview and critical comments. In: Ryu C-M, Weisskopf L, Piechulla B (eds) Bacterial volatile compounds as mediators of airborne interactions. Springer Nature Singapore Pte Ltd, pp 39–92. https://doi.org/10.1007/978-981-15-7293-7_2

Plyuta V, Lipasova V, Popova A, Koksharova O, Kuznetsov A, Szegedi E, Chernin L, Khmel I (2016) Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms. APMIS 124:586–594. https://doi.org/10.1111/apm.12547 PubMed DOI

Plyuta VA, Chernikova AS, Sidorova DE, Kupriyanova EV, Koksharova OA, Chernin LS, Khmel IA (2021) Modulation of Arabidopsis thaliana growth by volatile substances emitted by Pseudomonas and Serratia strains. World J Microbiol Biotechnol 37:82. https://doi.org/10.1007/s11274-021-03047-w PubMed DOI

Popova AA, Koksharova OA, Lipasova VA, Zaitseva JV, Katkova-Zhukotskaya OA, Eremina SI, Mironov AS, Chernin LS, Khmel IA (2014) Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans and Drosophila melanogaster. BioMed Res Int Article ID 125704, 11 pages.  https://doi.org/10.1155/2014/125704

Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare´ PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. https://doi.org/10.1073/pnas.0730845100 PubMed DOI PMC

Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. https://doi.org/10.1104/pp.103.026583 PubMed DOI PMC

Sanchez LA, Gomez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120. https://doi.org/10.1007/s00792-008-0203-5 PubMed DOI

Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:1–7. https://doi.org/10.1038/ismej.2015.42 DOI

Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. https://doi.org/10.1039/B507392H PubMed DOI

Schulz S, Dickschat JS, Kunze B, Wagner-Dobler I, Diestel R, Sasse F (2010) Biological activity of volatiles from marine and terrestrial bacteria. Mar Drugs 8:2976–2987. https://doi.org/10.3390/md8122976 PubMed DOI PMC

Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484. https://doi.org/10.3389/fmicb.2017.02484 PubMed DOI PMC

Sharifi R, Ryu CM (2018) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122:349–358. https://doi.org/10.1093/aob/mcy108 PubMed DOI PMC

Sharifi R, Ryu C-M (2020) Chapter 14. Formulation and agricultural application of bacterial volatile compounds. In: Ryu C-M, Weisskopf L, Piechulla B (eds) Bacterial volatile compounds as mediators of airborne interactions. Springer Nature Singapore Pte Ltd, pp 317–336

Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25:280–292. https://doi.org/10.1016/j.tim.2016.12.002 PubMed DOI

Veselova M, Lipasova V, Protsenko MA, Buza N, Khmel IA (2009) GacS-dependent regulation of enzymic and antifungal activities and synthesis of N-acylhomoserine lactones in rhizospheric strain Pseudomonas chlororaphis 449. Folia Microbiol (Praha) 54(5):401–408. https://doi.org/10.1007/s12223-009-0056-z

Weisskopf L, Schulz S, Garbeva P (2021) Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 19:391–404. https://doi.org/10.1038/s41579-020-00508-1 PubMed DOI

Zavilgelsky GB, Zarubina AP, Manukhov IV (2002) Sequencing and comparative analysis of the lux operon of Photorhabdus luminescens Strain Zm1: ERIC Elements as Putative Recombination Hot Spots. Mol Biol 36:637–647. https://doi.org/10.1023/A:1020663128043 DOI

Zhang C, Zhang M, Yan Z, Wang F, Yuan X, Zhao S, Zhang L, Tian H, Ding Z (2021) CO PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...