Reduced phosphatidylcholine level in the intestinal mucus layer of prediabetic NOD mice
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36811202
DOI
10.1111/apm.13302
Knihovny.cz E-zdroje
- Klíčová slova
- SCFA, Type 1 diabetes, metabolome, mucus lipids, phosphatidylcholine,
- MeSH
- diabetes mellitus 1. typu * MeSH
- fosfatidylcholiny MeSH
- hlen MeSH
- myši inbrední C57BL MeSH
- myši inbrední NOD MeSH
- myši MeSH
- prediabetes * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylcholiny MeSH
Type 1 diabetes (T1D) is an autoimmune disease with rising incidence. Pre- and manifest T1D is associated with intestinal barrier dysfunction, skewed microbiota composition, and serum dyslipidemia. The intestinal mucus layer protects against pathogens and its structure and phosphatidylcholine (PC) lipid composition may be compromised in T1D, potentially contributing to barrier dysfunction. This study compared prediabetic Non-Obese Diabetic (NOD) mice to healthy C57BL/6 mice by analyzing the intestinal mucus PC profile by shotgun lipidomics, plasma metabolomics by mass spectrometry and nuclear magnetic resonance, intestinal mucus production by histology, and cecal microbiota composition by 16 S rRNA sequencing. Jejunal mucus PC class levels were decreased in early prediabetic NOD vs C57BL/6 mice. In colonic mucus of NOD mice, the level of several PC species was reduced throughout prediabetes. In plasma, similar reductions of PC species were observed in early prediabetic NOD mice, where also increased beta-oxidation was prominent. No histological alterations were found in jejunal nor colonic mucus between the mouse strains. However, the β-diversity of the cecal microbiota composition differed between prediabetic NOD and C57BL/6 mice, and the bacterial species driving this difference were related to decreased short-chain fatty acid (SCFA)-production in the NOD mice. This study reports reduced levels of PCs in the intestinal mucus layer and plasma of prediabetic NOD mice as well as reduced proportions of SCFA-producing bacteria in cecal content at early prediabetes, possibly contributing to intestinal barrier dysfunction and T1D.
Department of Food Science University of Copenhagen Frederiksberg Denmark
Department of Pathology Rigshospitalet The Bartholin Institute Copenhagen Denmark
Faculty of Applied Sciences University of West Bohemia Plzeň The Czech Republic
Institute of Microbiology Czech Academy of Sciences Prague The Czech Republic
Zobrazit více v PubMed
Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract [Internet]. 2019;157:107842. https://doi.org/10.1016/j.diabres.2019.107842
Jerram ST, Leslie RD. The genetic architecture of type 1 diabetes. Genes (Basel). 2017;8(8):1-22.
Mønsted MØ, Falck ND, Pedersen K, Buschard K, Holm LJ, Haupt-jorgensen M. Intestinal permeability in type 1 diabetes: an updated comprehensive overview. J Autoimmun. 2021;122:102674.
Abdellatif AM, Sarvetnick NE. Current understanding of the role of gut dysbiosis in type 1 diabetes. J Diabetes. 2019;11(8):632-44.
Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev [Internet]. 2018;124:3-15. https://doi.org/10.1016/j.addr.2017.09.023
Braun A, Treede I, Gotthardt D, Tietje A, Zahn A, Ruhwald R, et al. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm Bowel Dis. 2009;15(11):1705-20.
Lugea A, Salas A, Casalot J, Guarner F, Malagelada JR. Surface hydrophobicity of the rat colonic mucosa is a defensive barrier against macromolecules and toxins. Gut. 2000;46(4):515-21.
Ehehalt R, Wagenblast J, Erben G, Lehmann WD, Hinz U, Merle U, et al. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray-tandem mass spectrometry. Scand J Gastroenterol. 2004;39(8):737-42.
Stremmel W, Vural H, Evliyaoglu O, Weiskirchen R. Delayed-release phosphatidylcholine is effective for treatment of ulcerative colitis: a meta-analysis. Dig Dis. 2021;39:508-15.
Stremmel W, Staffer S, Gan-Schreier H, Wannhoff A, Bach M, Gauss A. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2. Biochim Biophys Acta. 2016;1861(9):1161-9. https://doi.org/10.1016/j.bbalip.2016.06.019
Stremmel W, Staffer S, Schneider MJ, Gan-Schreier H, Wannhoff A, Stuhrmann N, et al. Genetic mouse models with intestinal-specific tight junction deletion resemble an ulcerative colitis phenotype. J Crohn's Colitis. 2017;11(10):1247-57.
Antvorskov JC, Josefsen K, Haupt-Jorgensen M, Fundova P, Funda DP, Buschard K. Gluten-free diet only during pregnancy efficiently prevents diabetes in nod mouse offspring. J Diabetes Res. 2016;2016:3047574.
Herzog R, Schuhmann K, Schwudke D, Sampaio JL, Bornstein SR, Schroeder M, et al. Lipidxplorer: a software for consensual cross-platform lipidomics. PLoS One. 2012;7(1):15-20.
Herzog R, Schwudke D, Shevchenko A. LipidXplorer: software for quantitative shotgun lipidomics compatible with multiple mass spectrometry platforms. Curr Protoc Bioinforma. 2013;43:14.12.1-14.12.30.
Nielsen IØ, Vidas Olsen A, Dicroce-Giacobini J, Papaleo E, Andersen KK, Jäättelä M, et al. Comprehensive evaluation of a quantitative shotgun lipidomics platform for mammalian sample analysis on a high-resolution mass spectrometer. J Am Soc Mass Spectrom. 2020;31(4):894-907.
Almeida R, Pauling JK, Sokol E, Hannibal-Bach HK, Ejsing CS. Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am Soc Mass Spectrom. 2014;26(1):133-48.
Hui Y, Tamez-Hidalgo P, Cieplak T, Satessa GD, Kot W, Kjaerulff S, et al. Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets. J Anim Sci Biotechnol. 2021;12(1):1-14.
Kamphuis JBJ, Mercier-Bonin M, Eutamène H, Theodorou V. Mucus organisation is shaped by colonic content; a new view. Sci Rep. 2017;7(1):1-13.
Chong J, Xia J. Using MetaboAnalyst 4.0 for metabolomics data analysis, interpretation, and integration with other omics data. Methods Mol Biol. 2020;2104:337-86.
Chen J, Zhang X, Zhou H. Generalized UniFrac distances, distance-based multivariate methods and feature-based univariate methods for microbiome data analysis.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Community ecology package. 2020.
Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol. 2021; 17(11):e1009442.
Suvitaival T. Lipidomic abnormalities during the pathogenesis of type 1 diabetes: a quantitative review. Curr Diab Rep. 2020;20(9):46.
Licthenberger LM. The hydrophobic barrier properties of gastrointestinal mucus. Annu Rev Physiol. 1995;57:565-83.
Thakur VR, Beladiya JV, Chaudagar KK, Mehta AA. An anti-asthmatic activity of natural toll-like receptor-4 antagonist in OVA-LPS-induced asthmatic rats. Clin Exp Pharmacol Physiol. 2018;45(11):1187-97.
Pedersen K, Haupt-Jorgensen M, Krogvold L, Kaur S, Gerling IC, Pociot F, et al. Genetic predisposition in the 2′-5′a pathway in the development of type 1 diabetes: potential contribution to dysregulation of innate antiviral immunity. Diabetologia. 2021;64(8):1805-15.
Alibashe-Ahmed M, Brioudes E, Reith W, Bosco D, Berney T. Toll-like receptor 4 inhibition prevents autoimmune diabetes in NOD mice. Sci Rep. 2019;9(1):1-8.
Ehehalt R, Braun A, Karner M, Füllekrug J, Stremmel W. Phosphatidylcholine as a constituent in the colonic mucosal barrier-physiological and clinical relevance. Biochim Biophys Acta. 2010;1801:983-93.
Carry PM, Vanderlinden LA, Johnson RK, Buckner T, Fiehn O, Steck AK, et al. Phospholipid levels at seroconversion are associated with resolution of persistent islet autoimmunity: the diabetes autoimmunity study in the young. Diabetes. 2021;70(7):1592-601.
Orešič M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med [Internet]. 2008;205(13):2975-84. https://doi.org/10.1084/jem.20081800
Borghi L, Lugari R, Montanari A, Dall'Argine P, Elia GF, Nicolotti V, et al. Plasma and skeletal muscle free amino acids in type I, insulin-treated diabetic subjects. Diabetes. 1985;34(8):812-5.
Rodríguez T, Alvarez B, Busquets S, Carbó N, López-Soriano FJ, Argilés JM. The increased skeletal muscle protein turnover of the streptozotozin diabetic rat is associated with high concentrations of branched-chain amino acids. Biochem Mol Med. 1997;61(1):87-94.
Karusheva Y, Strassburger K, Markgraf DF, Zaharia OP, Bódis K, Kössler T, et al. Branched-chain amino acids associate negatively with postprandial insulin secretion in recent-onset diabetes. J Endocr Soc. 2021;5(6):1-9.
Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PloS One. 2011;6(10):1-9.
Radwan S, Gilfillan D, Eklund B, Radwan HM, El Menofy NG, Lee J, et al. A comparative study of the gut microbiome in Egyptian patients with type I and type II diabetes. PLoS One [Internet]. 2020;15:1-17. https://doi.org/10.1371/journal.pone.0238764
Leiva-Gea I, Sánchez-Alcoholado L, Martin-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes. 2018;41:2385-95.
Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature [Internet]. 2018;562(7728):583-8. https://doi.org/10.1038/s41586-018-0617-x
Zhong Y, Nyman M, Fåk F. Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol Nutr Food Res. 2015;59(10):2066-76.
Liu B, Wang W, Zhu X, Sun X, Xiao J, Li D, et al. Response of gut microbiota to dietary fiber and metabolic interaction with SCFAs in piglets. Front Microbiol. 2018;9:1-12.
Ma Q, Li Y, Wang J, Li P, Duan Y, Dai H, et al. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed Pharmacother [Internet]. 2020;124:109873. https://doi.org/10.1016/j.biopha.2020.109873
Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705-15.
Mariño E, Richards JL, Mcleod KH, Stanley D, Yap YA, Knight J, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552-64.
Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature [Internet]. 2018;562(7728):589-94. https://doi.org/10.1038/s41586-018-0620-2
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev. 2015;40(1):133-59.