A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36830958
PubMed Central
PMC9953205
DOI
10.3390/biomedicines11020420
PII: biomedicines11020420
Knihovny.cz E-zdroje
- Klíčová slova
- Wilson disease, copper accumulation, hepatic disfunction, neurological disfunction, patients’ involvement, psychiatric disorders,
- Publikační typ
- časopisecké články MeSH
Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.
2nd Department of Neurology Institute of Psychiatry and Neurology 02 957 Warsaw Poland
Department of Medicine Johns Hopkins University School of Medicine Baltimore MD 1800 USA
Department of Physiology Johns Hopkins University School of Medicine Baltimore MD 1800 USA
Dutch Society for Liver Disease Patients 3828 NS Hoogland The Netherlands
German Society for Wilson disease Patients Zehlendorfer Damm 119 D 14532 Kleinnachnow Germany
Private Practice for Internal Medicine Beethovenstraße 2 D 76530 Baden Baden Germany
Rare Neurodegenerative Diseases Lab Centro de Investigacion Principe Felipe 46012 Valencia Spain
Zobrazit více v PubMed
Wilson S.A.K. Degeneration lenticulaire progressive Maladie nerveuse familiale associee a la cirrhose de foi. Rev. Neurol. 1912;23:229–234.
Wilson S.A.K. Progressive lenticular degeneration: A familial nervous diseases associated with cirrhosis of the liver. Brain. 1912;34:295–307. doi: 10.1093/brain/34.4.295. PubMed DOI
Rumpel A. Über das Wesen und die Bedeutung der Leberveränderungen und der Pigmentierungen bei den damit verbundenen Fällen von Pseudosklerose, zugleich ein Beitrag zur Lehre von der Pseudosklerose (Westphal-Strumpell) Dtsch. Z. Nervenheilkd. 1913;49:54–73. doi: 10.1007/BF01760543. DOI
Cumings J.N. The copper and iron content of brain and liver in the normal and in hepato-lenticular degeneration. Brain. 1948;71:410–415. doi: 10.1093/brain/71.4.410. PubMed DOI
Walshe J.M. The conquest of Wilson’s disease. Brain. 2009;132:2289–2295. doi: 10.1093/brain/awp149. PubMed DOI
Czlonkowska A., Litwin T., Dusek P., Ferenci P., Lutsenko S., Medici V., Rybakowski J.K., Weiss K.H., Schilsky M.L. Wilson disease. Nat. Rev. Dis. Prim. 2018;4:21. doi: 10.1038/s41572-018-0018-3. PubMed DOI PMC
Frydman M., Bonne-Tamir B., Farrer L.A., Conneally P.M., Magazanik A., Ashbel S., Goldwitch Z. Assignment of the gene for Wilson diseases to chromosome 13: Linkage to the esterase D locus. Proc. Natl. Acad. Sci. USA. 1985;82:1819–1821. doi: 10.1073/pnas.82.6.1819. PubMed DOI PMC
Petrukhin K., Fischer S.G., Pirastu M., Tanzi R.E., Chernov I., Devoto M., Brustowicz L.M., Cayanis E., Vitale E., Russo J.J., et al. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat. Genet. 1993;5:338–343. doi: 10.1038/ng1293-338. PubMed DOI
Bull P.C., Thomas G.R., Rommens J.M., Forbes J.R., Cox D.W. The Wilson’s disease gene is a putative copper transporting P-type ATPase similar to Menkes’ gene. Nat. Genet. 1993;5:327–337. doi: 10.1038/ng1293-327. PubMed DOI
Tanzi R.E., Petrukhin K., Chernov I., Pellequer J.L., Wasco W., Ross B., Romano D.M., Parano E., Pavone L., Brzustowicz L.M., et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 1993;5:344–350. doi: 10.1038/ng1293-344. PubMed DOI
Yamaguchi Y., Heiny M.E., Gitlin J.D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Biophys. Res. Commun. 1993;197:271–277. doi: 10.1006/bbrc.1993.2471. PubMed DOI
Wakap S.N., Lambert D.M., Olry A., Rodwell C., Gueydan C., Lanneau V., Murphy D., Le Cam Y., Rath A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet. 2020;28:165–173. doi: 10.1038/s41431-019-0508-0. PubMed DOI PMC
Ophanet The Portal for Rare Diseases and Orphan Drugs. [(accessed on 15 May 2022)]. Available online: www.orphanet.net.
Lee C.E., Singleton K.S., Wallin M., Faundez V. Rare Genetic Diseases: Nature’s Experiments on Human Development. iScience. 2020;23:101123. doi: 10.1016/j.isci.2020.101123. PubMed DOI PMC
European Reference Network: Hepatological Diseases (ERN RARE-LIVER) [(accessed on 15 May 2022)]. Available online: https://rare-liver.eu.
Gil-Bea F.J., Aldanondo G., Lasa-Fernández H., de Munain A.L., Vallejo-Illarramendi A. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev. Mol. Med. 2017;19:e7. doi: 10.1017/erm.2017.9. PubMed DOI
Kim B.E., Nevitt T., Thiele D.J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008;4:176–185. doi: 10.1038/nchembio.72. PubMed DOI
Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life. 2017;69:211–217. doi: 10.1002/iub.1590. PubMed DOI
Reed E., Lutsenko S., Bandmann O. Animal models of Wilson disease. J. Neurochem. 2018;146:356–373. doi: 10.1111/jnc.14323. PubMed DOI PMC
Pierson H., Yang H., Lutsenko S. Copper Transport and Disease: What can we learn from organoids? Annu. Rev. Nutr. 2019;39:75–94. doi: 10.1146/annurev-nutr-082018-124242. PubMed DOI PMC
Hartwig C., Zlatic S.A., Wallin M., Vrailas-Mortimer A., Fahrni C.J., Faundez V. Trafficking mechanisms of P-type ATPase copper transporters. Curr. Opin. Cell Biol. 2019;59:24–33. doi: 10.1016/j.ceb.2019.02.009. PubMed DOI PMC
Polishchuk R.S., Polishchuk E.V. From and to the Golgi—Defining the Wilson disease protein road map. FEBS Lett. 2019;593:2341–2350. doi: 10.1002/1873-3468.13575. PubMed DOI
Stremmel W., Weiskirchen R. Therapeutic strategies in Wilson disease: Pathophysiology and mode of action. Ann. Transl. Med. 2021;9:732. doi: 10.21037/atm-20-3090. PubMed DOI PMC
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J. Cell Sci. 2021;134:jcs240523. doi: 10.1242/jcs.240523. PubMed DOI PMC
Maung M.T., Carlson A., Olea-Flores M., Elkhadragy L., Schachtschneider K.M., Navarro-Tito N., Padilla-Benavides T. The relationship and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J. 2021;35:e21810. doi: 10.1096/fj.202100273RR. PubMed DOI
Bitter R.M., Oh S., Deng Z., Rahman S., Hite R.K., Yuan P. Structure of the Wilson disease copper transporter ATP7B. Sci. Adv. 2022;8:eabl5508. doi: 10.1126/sciadv.abl5508. PubMed DOI PMC
Zischka H., Lichtmannegger J., Schmitt S., Jägemann N., Schulz S., Wartini D., Jennen L., Rust C., Larochette N., Galluzzi L., et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J. Clin. Investig. 2011;121:1508–1518. doi: 10.1172/JCI45401. PubMed DOI PMC
Borchard S., Bork F., Rieder T., Eberhagen C., Popper B., Lichtmannegger J., Schmitt S., Adamski J., Klingenspor M., Weiss K.H., et al. The exceptional sensitivity of brain mitochondria to copper. Toxicol. Vitr. 2018;51:11–22. doi: 10.1016/j.tiv.2018.04.012. PubMed DOI
Mukherjee S., Dutta S., Majumdar S., Biswas T., Jaiswal P., Sengupta M., Bhattacharya A., Gangopadhyay P.K., Avdekar A., Das S.K., et al. Genetic defects in Indian Wilson disease patients and genotype-phenotype correlation. Park. Relat. Disord. 2014;20:75–81. doi: 10.1016/j.parkreldis.2013.09.021. PubMed DOI
Stenson P.D., Mort M., Ball E.V., Evans K., Hayden M., Heywood S., Hussain M., Phillips A.D., Coper D.N. The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next generation sequencing studies. Hum. Genet. 2017;136:665–677. doi: 10.1007/s00439-017-1779-6. PubMed DOI PMC
Parisi S., Polishchuk E.V., Allocca S., Ciano M., Musto A., Gallo M., Perone L., Ranucci G., Iorio R., Polishchuk R.S., et al. Characterization of the most frequent ATP7B mutations causing Wilson disease I hepatocytes from patient induced pluripotent stem cells. Sci. Rep. 2018;8:6247. doi: 10.1038/s41598-018-24717-0. PubMed DOI PMC
National Library of Medicine ClinVar. Entry ATP7B Gene. [(accessed on 5 May 2022)]; Available online: https://www.ncbi.nlm.nih.gov/clinvar/?term=atp7b%5Bgene%5D&redir=gene.
The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. [(accessed on 5 May 2022)]. Available online: http://www.hgmd.cf.ac.uk/ac/gene.php?gene=ATP7B.
Gao J., Brackley S., Mann J.P. The global prevalence of Wilson disease from next-generation sequencing data. Genet. Med. 2019;21:1155–1163. doi: 10.1038/s41436-018-0309-9. PubMed DOI
Leung M., Aronowotz P.B., Medici V. The present and future challenges of Wilson’s disease diagnosis and treatment. Clin. Liver Dis. 2021;17:267–270. doi: 10.1002/cld.1041. PubMed DOI PMC
Sanchez-Monteagudo A., Ripoles E., Berenguer M., Espinos C. Wilson’s disease: Facing the challenge of diagnosing a rare disease. Biomedicines. 2021;9:1100. doi: 10.3390/biomedicines9091100. PubMed DOI PMC
Garcia-Villarreal L., Hernandez-Ortega A., Sanchez-Monteagudo A., Pena-Quintana L., Ramirez-Lorenzo T., Riano M., Moreno-Perez R., Monescillo A., Gonzalez_Santana D., Quinones I., et al. Wilson disease: Revision of diagnostic criteria in a clinical series with great genetic homogeneity. J. Gasteroenterol. 2021;56:78–89. doi: 10.1007/s00535-020-01745-0. PubMed DOI
Coffey A.J., Durkie M., Hague S., McLay K., Emmerson J., Lo C., Klaffke S., Joyce C.J., Dhawan A., Hadzic N., et al. A genetic study of Wilson’s disease in the United Kingdom. Brain. 2013;136:1476–1487. doi: 10.1093/brain/awt035. PubMed DOI PMC
Collet C., Laplanche J.L., Page J., Morel H., Woimasnt F., Poujois A. High genetic carrier frequency of Wilson’s disease in France: Discrepancies with clinical prevalence. BMC Med. Genet. 2018;19:143. doi: 10.1186/s12881-018-0660-3. PubMed DOI PMC
Garcıa-Villarreal L., Daniels S., Shaw S.H., Cotton D., Galvin M., Geskes J., Bauer P., Sierra-Herandez A., Buckler A., Tugores A. High prevalence of the very rare Wilson disease gene mutation Leu708Pro in the Island of Gran Canaria (Canary Islands, Spain): A genetic and clinical study. Hepatology. 2000;32:1329–1336. doi: 10.1053/jhep.2000.20152. PubMed DOI
Sanchez-Monteagudo A., lvarez-Sauco M., Sastre I., Martinez-Torres I., Lupo V., Berenguer M., Espinos C. Genetics of Wilson disease and Wilson-like phenotype in a clinical series from eastern Spain. Clin. Genet. 2020;97:758–763. doi: 10.1111/cge.13719. PubMed DOI
Ferenci P. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: Impact on genetic testing. Hum. Genet. 2006;120:151–159. doi: 10.1007/s00439-006-0202-5. PubMed DOI
Zappu A., Magli O., Lepori M.B., Dessi V., Diana S., Incollu S., Kanavakis E., Nicolaidou P., Manolaki N., Fretzayas A., et al. High incidence and allelic homogeneity of Wilson disease in 2 isolated populations: A prerequisite for efficient disease prevention programs. J. Pediatr. Gastroenterol. Nutr. 2008;47:334–338. doi: 10.1097/MPG.0b013e31817094f6. PubMed DOI
Espinós C., Ferenci P. Are the new genetic tools for diagnosis of Wilson disease helpful in clinical practice? JHEP Rep. 2020;2:100114. doi: 10.1016/j.jhepr.2020.100114. PubMed DOI PMC
Wallace D.F., Dooley J.S. ATP7B variant penetrance explains differences between genetic and clinical prevalence estimates for Wilson disease. Hum. Genet. 2020;139:1065–1075. doi: 10.1007/s00439-020-02161-3. PubMed DOI
Medici V., Lasalle J.M. Genetics and epigenetics factors of Wilson disease. Ann. Transl. Med. 2019;7:S58. doi: 10.21037/atm.2019.01.67. PubMed DOI PMC
Lalioti V., Tsubota A., Sandoval I.V. Disorders in hepatic copper secretion: Wilson’s disease and pleomorphic syndromes. Semin. Liver Dis. 2017;37:175–188. doi: 10.1055/s-0037-1602764. PubMed DOI
Mordaunt C.E., Kieffer D.A., Shibata N.M., Członkowska A., Litwin T., Weiss K.H., Zhu Y., Bowlus C.L., Sarkar S., Cooper S., et al. Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin. 2019;12:10. doi: 10.1186/s13072-019-0255-z. PubMed DOI PMC
Moini M., To U., Schilsky M.L. Recent advances in Wilson disease. Transl. Gastroenterol. Hepatol. 2021;6:21. doi: 10.21037/tgh-2020-02. PubMed DOI PMC
Stattermayer A.F., Traussnigg S., Dines H.-P., Aigner E., Stauber R., Lackner K., Hofer H., Stift J., Wrba F., Stadlmayr A., et al. Hepatic steatosis in Wilson disease—Role of copper and PNPLA3 mutations. J. Hepatol. 2015;63:156–163. doi: 10.1016/j.jhep.2015.01.034. PubMed DOI
Schiefermeier M., Kollegger H., Madl C., Polli C., Oder W., Kühn H.-J., Berr F., Ferenci P. The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson’s disease. Brain. 2000;123:585–590. doi: 10.1093/brain/123.3.585. PubMed DOI
Medici V., Weiss K.H. Genetic and environmental modifiers of Wilson disease. Handb. Clin. Neurol. 2017;142:35–41. doi: 10.1016/B978-0-444-63625-6.00004-5. PubMed DOI
Simon L., Schaefer M., Reichert J., Stremmel W. Analysis of the human atox1 homologue in Wilson patients. World J. Gastroenterol. 2008;14:2383–2387. doi: 10.3748/wjg.14.2383. PubMed DOI PMC
Bost M., Piguit-Lacroix G., Parant F., Wilson C.M.R. Molecular analysis of Wilson patients: Direct sequencing and MLPA analysis in the ATP7B gene and Atox1 and COMMD1 gene analysis. J. Trace Elem. Med. Biol. 2012;26:97–101. doi: 10.1016/j.jtemb.2012.04.024. PubMed DOI
Kumari N., Kumar A., Pal A., Thapa B.R., Modi M., Prasad R. In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: Plausible role in modulating ATOX1-ATP7B interaction. Mol. Biol. Rep. 2019;46:3307–3313. doi: 10.1007/s11033-019-04791-x. PubMed DOI
Zarina A., Tolmane I., Krumina Z., Tutane A.I., Gailite L. Association of variants in the CP, ATOX1, and COMMD1 genes with Wilson disease symptoms in Latvia. Balk. J. Med. Genet. 2019;21:37–42. doi: 10.2478/bjmg-2019-0023. PubMed DOI PMC
van de Sluis B., Rothuizen J., Pearson P.L., van Oost B., Wijmenga C. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum. Mol. Genet. 2002;11:165–173. doi: 10.1093/hmg/11.2.165. PubMed DOI
Stuehler B., Reichert J., Stremmel W., Schaefer M. Analysis of the human homologue of the canine copper toxicosis gene MURR1. J. Mol. Med. 2004;82:629–634. doi: 10.1007/s00109-004-0557-9. PubMed DOI
Weiss K.H., Merle U., Schaefer M., Ferenci P., Fullekrug J., Stremmel W. Copper toxicosis gene MURR1 is not changed in Wilson disease patients with normal blood ceruloplasmin levels. World J. Gastroenterol. 2006;12:2239–2242. doi: 10.3748/wjg.v12.i14.2239. PubMed DOI PMC
Gupta A., Chattopadhyay I., Mukherjee S., Sengupta M., Das S.K., Ray K. A novel COMMD1 mutation Thr174Met associated with elevated urinary copper and signs of enhanced apoptotic cell death in a Wilson Disease patient. Behav. Brain Funct. 2010;6:33. doi: 10.1186/1744-9081-6-33. PubMed DOI PMC
Weiss K.H., Runz H., Noe B., Gotthardt D.N., Merle U., Ferenci P., Stremmel W., Fuellekrug J. Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J. Inherit. Metab. Dis. 2010;33:S233–S240. doi: 10.1007/s10545-010-9123-5. PubMed DOI
Hafkemeyer P., Schupp M., Storch M., Gertok W., Hausinger D. Excessive iron storage in a patient with Wilson’s disease. J. Mol. Med. 1994;72:134–136. doi: 10.1007/BF00184590. PubMed DOI
Walshe J.M., Cox D.W. Effect of treatment of Wilson’s disease on natural history of haemochromatosis. Lancet. 1998;352:112–113. doi: 10.1016/S0140-6736(98)85017-4. PubMed DOI
Sorbello O., Sini M., Civolani A., Demelia L. HFE gene mutations and Wilson’s disease in Sardinia. Dig. Liver Dis. 2010;42:216–219. doi: 10.1016/j.dld.2009.06.012. PubMed DOI
Pfeffenberger J., Gotthardt D.N., Herrmann T., Seesle J., Merle U., Schirmacher P., Stremmel W., Weiss K.H. Iron metabolism and the role of HFE gene polymorphism in Wilson disease. Liver Int. 2012;32:165–170. doi: 10.1111/j.1478-3231.2011.02661.x. PubMed DOI
Przybylkowski A., Gromadzka G., Czlonkowska A. Polymorphism of metal transporter genes DMT1 and ATP7A in Wilson’s disease. J. Trace Elem. Med. Biol. 2014;28:8–12. doi: 10.1016/j.jtemb.2013.08.002. PubMed DOI
Sibani S., Christensen B., O’Farrall E., Saadi I., Hiou-Tim F., Rosenblatt D.S., Rozen R. Characterization of six novel mutations in the methylenetetrahydrofilate reductase (MTHFR) gene in patients with homocystinuria. Hum. Mutat. 2000;15:280–287. doi: 10.1002/(SICI)1098-1004(200003)15:3<280::AID-HUMU9>3.0.CO;2-I. PubMed DOI
Gromadzka G., Rudnicka M., Chabik G., Przybylkowski A., Czlonkowska A. Genetic variability in the methylenetetrahydroflate reductase gene (MTHFR) affects clinical expression of Wilson’s disease. J. Hepatol. 2011;55:913–919. doi: 10.1016/j.jhep.2011.01.030. PubMed DOI
Poldervaart J., Favier R.P., Penning L.C., van den Ingh T.S., Rothuizen J. Primary hepatitis in dogs: A retrospective review (2002–2006) J. Vet. Intern. Med. 2009;23:72–80. doi: 10.1111/j.1939-1676.2008.0215.x. PubMed DOI
Fieten H., Penning L.C., Leegwater P.A.J., Rothuizen J. New canine models of copper toxicosis: Diagnosis, treatment, and genetics. Ann. N. Y. Acad. Sci. 2014;1314:42–48. doi: 10.1111/nyas.12442. PubMed DOI
Fieten H., Gill Y., Martin A.J., Concilli M., Dirksen K., van Steenbeek F.G., Spee B., van den Ingh T.S., Martens E.C., Festa P., et al. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: A new canine model for copper-metabolism disorders. Dis. Model Mech. 2016;9:25–38. doi: 10.1242/dmm.020263. PubMed DOI PMC
Reuner U., Dinger J. Pregnancy and Wilson disease: Management and outcome of mother and newborns-experiences of a perinatal centre. Ann. Transl. Med. 2019;7((Suppl. 2)):S56. doi: 10.21037/atm.2019.04.40. PubMed DOI PMC
Litwin T., Gromadzka G., Czlonkowska A., Golebiowski M., Poniatowska R. The effect of gender on brain MRI pathology in Wilson’s disease. Metab. Brain Dis. 2013;28:69–75. doi: 10.1007/s11011-013-9378-2. PubMed DOI PMC
European Association for the Study of the Liver. EASL clinical practice guidelines: Wilson’s disease. J. Hepatol. 2012;56:671–685. doi: 10.1016/j.jhep.2011.11.007. PubMed DOI
Medici V., Huster D. Animal models of Wilson disease. Handb. Clin. Neurol. 2017;142:57–70. doi: 10.1016/B978-0-444-63625-6.00006-9. PubMed DOI
Huster D. Chapter 13—Animal models for Wilson disease. In: Kerkar N., Roberts E.A., editors. Clinical and Translational Perspectives on Wilson Disease. Academic Press; Cambridge, MA, USA: 2019. pp. 127–139. DOI
Dusek P., Skoloudik D., Maskova J., Huelnhagen T., Bruha R., Zahorakova D., Niendorf T., Ruzicka E., Schneider S.A., Wuerfel J. Brain iron accumulation in Wilson’s disease: A longitudinal imaging case study during anticopper treatment using 7.0T MRI and transcranial sonography. J. Magn. Reson Imaging. 2018;47:282–285. doi: 10.1002/jmri.25702. PubMed DOI
Litwin T., Dzieżyc K., Karliński M., Chabik G., Czepiel W., Członkowska A. Early neurological worsening in patients with Wilson’s disease. J. Neurol. Sci. 2015;355:162–167. doi: 10.1016/j.jns.2015.06.010. PubMed DOI
Członkowska A., Rodo M., Wierzchowska-Ciok A., Smolinski L., Litwin T. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease. Liver Int. 2018;38:1860–1866. doi: 10.1111/liv.13715. PubMed DOI
Ferenci P., Członkowska A., Merle U., Ferenc S., Gromadzka G., Yurdaydin C., Vogel W., Bruha R., Schmidt H.T., Stremmel W. Late-onset Wilson’s disease. Gastroenterology. 2007;132:1294–1298. doi: 10.1053/j.gastro.2007.02.057. PubMed DOI
Członkowska A., Rodo M., Gromadzka G. Late onset Wilson’s disease: Therapeutic implications. Mov. Disord. 2008;23:896–898. doi: 10.1002/mds.21985. PubMed DOI
Brunet A.S., Marotte S., Guillaud O., Lachaux A. Familial screening in Wilson’s disease: Think at the previous generation. J. Hepatol. 2012;57:1394–1395. doi: 10.1016/j.jhep.2012.07.011. PubMed DOI
Dzieżyc K., Litwin T., Chabik G., Gramza K., Członkowska A. Families with Wilson’s disease in subsequent generations: Clinical and genetic analysis. Mov. Disord. 2014;29:1828–1832. doi: 10.1002/mds.26057. PubMed DOI
Genoud S., Senior A.M., Hare D.J., Double K.L. Meta-analysis of copper and iron in Parkinson’s disease brain and biofluids. Mov. Disord. 2020;35:662–671. doi: 10.1002/mds.27947. PubMed DOI
Davies K.M., Hare D.J., Cottam V., Chen N., Hilgers L., Halliday G., Mercer J.F., Double K.L. Localization of copper and copper transporters in the human brain. Metallomics. 2013;5:43–51. doi: 10.1039/C2MT20151H. PubMed DOI