A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment

. 2023 Feb 01 ; 11 (2) : . [epub] 20230201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36830958
Odkazy

PubMed 36830958
PubMed Central PMC9953205
DOI 10.3390/biomedicines11020420
PII: biomedicines11020420
Knihovny.cz E-zdroje

Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.

2nd Department of Neurology Institute of Psychiatry and Neurology 02 957 Warsaw Poland

Brain and Mind Centre and School of Medical Sciences The University of Sydney Sydney NSW 2006 Australia

Department of Clinical Sciences of Companion Animals Faculty of Veterinary Medicine Utrecht University 3584 CM Utrecht The Netherlands

Department of Internal Medicine Division of Gastroenterology and Hepatology University of California Davis Sacramento CA 59817 USA

Department of Medicine Johns Hopkins University School of Medicine Baltimore MD 1800 USA

Department of Neurology and Centre of Clinical Neuroscience 1st Faculty of Medicine Charles University and General University Hospital 128 08 Prague Czech Republic

Department of Physiology Johns Hopkins University School of Medicine Baltimore MD 1800 USA

Department of Radiology Charles University and General University Hospital 128 08 Prague Czech Republic

Digestive Medicine Department Ciberehd and IISLaFe Hospital U i P La Fe University of Valencia 46010 Valenci Spain

Dutch Society for Liver Disease Patients 3828 NS Hoogland The Netherlands

German Society for Wilson disease Patients Zehlendorfer Damm 119 D 14532 Kleinnachnow Germany

Institute of Molecular Pathobiochemistry Experimental Gene Therapy and Clinical Chemistry RWTH Aachen University Hospital Aachen D 52074 Aachen Germany

Private Practice for Internal Medicine Beethovenstraße 2 D 76530 Baden Baden Germany

Rare Neurodegenerative Diseases Lab Centro de Investigacion Principe Felipe 46012 Valencia Spain

Zobrazit více v PubMed

Wilson S.A.K. Degeneration lenticulaire progressive Maladie nerveuse familiale associee a la cirrhose de foi. Rev. Neurol. 1912;23:229–234.

Wilson S.A.K. Progressive lenticular degeneration: A familial nervous diseases associated with cirrhosis of the liver. Brain. 1912;34:295–307. doi: 10.1093/brain/34.4.295. PubMed DOI

Rumpel A. Über das Wesen und die Bedeutung der Leberveränderungen und der Pigmentierungen bei den damit verbundenen Fällen von Pseudosklerose, zugleich ein Beitrag zur Lehre von der Pseudosklerose (Westphal-Strumpell) Dtsch. Z. Nervenheilkd. 1913;49:54–73. doi: 10.1007/BF01760543. DOI

Cumings J.N. The copper and iron content of brain and liver in the normal and in hepato-lenticular degeneration. Brain. 1948;71:410–415. doi: 10.1093/brain/71.4.410. PubMed DOI

Walshe J.M. The conquest of Wilson’s disease. Brain. 2009;132:2289–2295. doi: 10.1093/brain/awp149. PubMed DOI

Czlonkowska A., Litwin T., Dusek P., Ferenci P., Lutsenko S., Medici V., Rybakowski J.K., Weiss K.H., Schilsky M.L. Wilson disease. Nat. Rev. Dis. Prim. 2018;4:21. doi: 10.1038/s41572-018-0018-3. PubMed DOI PMC

Frydman M., Bonne-Tamir B., Farrer L.A., Conneally P.M., Magazanik A., Ashbel S., Goldwitch Z. Assignment of the gene for Wilson diseases to chromosome 13: Linkage to the esterase D locus. Proc. Natl. Acad. Sci. USA. 1985;82:1819–1821. doi: 10.1073/pnas.82.6.1819. PubMed DOI PMC

Petrukhin K., Fischer S.G., Pirastu M., Tanzi R.E., Chernov I., Devoto M., Brustowicz L.M., Cayanis E., Vitale E., Russo J.J., et al. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat. Genet. 1993;5:338–343. doi: 10.1038/ng1293-338. PubMed DOI

Bull P.C., Thomas G.R., Rommens J.M., Forbes J.R., Cox D.W. The Wilson’s disease gene is a putative copper transporting P-type ATPase similar to Menkes’ gene. Nat. Genet. 1993;5:327–337. doi: 10.1038/ng1293-327. PubMed DOI

Tanzi R.E., Petrukhin K., Chernov I., Pellequer J.L., Wasco W., Ross B., Romano D.M., Parano E., Pavone L., Brzustowicz L.M., et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 1993;5:344–350. doi: 10.1038/ng1293-344. PubMed DOI

Yamaguchi Y., Heiny M.E., Gitlin J.D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Biophys. Res. Commun. 1993;197:271–277. doi: 10.1006/bbrc.1993.2471. PubMed DOI

Wakap S.N., Lambert D.M., Olry A., Rodwell C., Gueydan C., Lanneau V., Murphy D., Le Cam Y., Rath A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet. 2020;28:165–173. doi: 10.1038/s41431-019-0508-0. PubMed DOI PMC

Ophanet The Portal for Rare Diseases and Orphan Drugs. [(accessed on 15 May 2022)]. Available online: www.orphanet.net.

Lee C.E., Singleton K.S., Wallin M., Faundez V. Rare Genetic Diseases: Nature’s Experiments on Human Development. iScience. 2020;23:101123. doi: 10.1016/j.isci.2020.101123. PubMed DOI PMC

European Reference Network: Hepatological Diseases (ERN RARE-LIVER) [(accessed on 15 May 2022)]. Available online: https://rare-liver.eu.

Gil-Bea F.J., Aldanondo G., Lasa-Fernández H., de Munain A.L., Vallejo-Illarramendi A. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev. Mol. Med. 2017;19:e7. doi: 10.1017/erm.2017.9. PubMed DOI

Kim B.E., Nevitt T., Thiele D.J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008;4:176–185. doi: 10.1038/nchembio.72. PubMed DOI

Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life. 2017;69:211–217. doi: 10.1002/iub.1590. PubMed DOI

Reed E., Lutsenko S., Bandmann O. Animal models of Wilson disease. J. Neurochem. 2018;146:356–373. doi: 10.1111/jnc.14323. PubMed DOI PMC

Pierson H., Yang H., Lutsenko S. Copper Transport and Disease: What can we learn from organoids? Annu. Rev. Nutr. 2019;39:75–94. doi: 10.1146/annurev-nutr-082018-124242. PubMed DOI PMC

Hartwig C., Zlatic S.A., Wallin M., Vrailas-Mortimer A., Fahrni C.J., Faundez V. Trafficking mechanisms of P-type ATPase copper transporters. Curr. Opin. Cell Biol. 2019;59:24–33. doi: 10.1016/j.ceb.2019.02.009. PubMed DOI PMC

Polishchuk R.S., Polishchuk E.V. From and to the Golgi—Defining the Wilson disease protein road map. FEBS Lett. 2019;593:2341–2350. doi: 10.1002/1873-3468.13575. PubMed DOI

Stremmel W., Weiskirchen R. Therapeutic strategies in Wilson disease: Pathophysiology and mode of action. Ann. Transl. Med. 2021;9:732. doi: 10.21037/atm-20-3090. PubMed DOI PMC

Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J. Cell Sci. 2021;134:jcs240523. doi: 10.1242/jcs.240523. PubMed DOI PMC

Maung M.T., Carlson A., Olea-Flores M., Elkhadragy L., Schachtschneider K.M., Navarro-Tito N., Padilla-Benavides T. The relationship and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J. 2021;35:e21810. doi: 10.1096/fj.202100273RR. PubMed DOI

Bitter R.M., Oh S., Deng Z., Rahman S., Hite R.K., Yuan P. Structure of the Wilson disease copper transporter ATP7B. Sci. Adv. 2022;8:eabl5508. doi: 10.1126/sciadv.abl5508. PubMed DOI PMC

Zischka H., Lichtmannegger J., Schmitt S., Jägemann N., Schulz S., Wartini D., Jennen L., Rust C., Larochette N., Galluzzi L., et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J. Clin. Investig. 2011;121:1508–1518. doi: 10.1172/JCI45401. PubMed DOI PMC

Borchard S., Bork F., Rieder T., Eberhagen C., Popper B., Lichtmannegger J., Schmitt S., Adamski J., Klingenspor M., Weiss K.H., et al. The exceptional sensitivity of brain mitochondria to copper. Toxicol. Vitr. 2018;51:11–22. doi: 10.1016/j.tiv.2018.04.012. PubMed DOI

Mukherjee S., Dutta S., Majumdar S., Biswas T., Jaiswal P., Sengupta M., Bhattacharya A., Gangopadhyay P.K., Avdekar A., Das S.K., et al. Genetic defects in Indian Wilson disease patients and genotype-phenotype correlation. Park. Relat. Disord. 2014;20:75–81. doi: 10.1016/j.parkreldis.2013.09.021. PubMed DOI

Stenson P.D., Mort M., Ball E.V., Evans K., Hayden M., Heywood S., Hussain M., Phillips A.D., Coper D.N. The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next generation sequencing studies. Hum. Genet. 2017;136:665–677. doi: 10.1007/s00439-017-1779-6. PubMed DOI PMC

Parisi S., Polishchuk E.V., Allocca S., Ciano M., Musto A., Gallo M., Perone L., Ranucci G., Iorio R., Polishchuk R.S., et al. Characterization of the most frequent ATP7B mutations causing Wilson disease I hepatocytes from patient induced pluripotent stem cells. Sci. Rep. 2018;8:6247. doi: 10.1038/s41598-018-24717-0. PubMed DOI PMC

National Library of Medicine ClinVar. Entry ATP7B Gene. [(accessed on 5 May 2022)]; Available online: https://www.ncbi.nlm.nih.gov/clinvar/?term=atp7b%5Bgene%5D&redir=gene.

The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. [(accessed on 5 May 2022)]. Available online: http://www.hgmd.cf.ac.uk/ac/gene.php?gene=ATP7B.

Gao J., Brackley S., Mann J.P. The global prevalence of Wilson disease from next-generation sequencing data. Genet. Med. 2019;21:1155–1163. doi: 10.1038/s41436-018-0309-9. PubMed DOI

Leung M., Aronowotz P.B., Medici V. The present and future challenges of Wilson’s disease diagnosis and treatment. Clin. Liver Dis. 2021;17:267–270. doi: 10.1002/cld.1041. PubMed DOI PMC

Sanchez-Monteagudo A., Ripoles E., Berenguer M., Espinos C. Wilson’s disease: Facing the challenge of diagnosing a rare disease. Biomedicines. 2021;9:1100. doi: 10.3390/biomedicines9091100. PubMed DOI PMC

Garcia-Villarreal L., Hernandez-Ortega A., Sanchez-Monteagudo A., Pena-Quintana L., Ramirez-Lorenzo T., Riano M., Moreno-Perez R., Monescillo A., Gonzalez_Santana D., Quinones I., et al. Wilson disease: Revision of diagnostic criteria in a clinical series with great genetic homogeneity. J. Gasteroenterol. 2021;56:78–89. doi: 10.1007/s00535-020-01745-0. PubMed DOI

Coffey A.J., Durkie M., Hague S., McLay K., Emmerson J., Lo C., Klaffke S., Joyce C.J., Dhawan A., Hadzic N., et al. A genetic study of Wilson’s disease in the United Kingdom. Brain. 2013;136:1476–1487. doi: 10.1093/brain/awt035. PubMed DOI PMC

Collet C., Laplanche J.L., Page J., Morel H., Woimasnt F., Poujois A. High genetic carrier frequency of Wilson’s disease in France: Discrepancies with clinical prevalence. BMC Med. Genet. 2018;19:143. doi: 10.1186/s12881-018-0660-3. PubMed DOI PMC

Garcıa-Villarreal L., Daniels S., Shaw S.H., Cotton D., Galvin M., Geskes J., Bauer P., Sierra-Herandez A., Buckler A., Tugores A. High prevalence of the very rare Wilson disease gene mutation Leu708Pro in the Island of Gran Canaria (Canary Islands, Spain): A genetic and clinical study. Hepatology. 2000;32:1329–1336. doi: 10.1053/jhep.2000.20152. PubMed DOI

Sanchez-Monteagudo A., lvarez-Sauco M., Sastre I., Martinez-Torres I., Lupo V., Berenguer M., Espinos C. Genetics of Wilson disease and Wilson-like phenotype in a clinical series from eastern Spain. Clin. Genet. 2020;97:758–763. doi: 10.1111/cge.13719. PubMed DOI

Ferenci P. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: Impact on genetic testing. Hum. Genet. 2006;120:151–159. doi: 10.1007/s00439-006-0202-5. PubMed DOI

Zappu A., Magli O., Lepori M.B., Dessi V., Diana S., Incollu S., Kanavakis E., Nicolaidou P., Manolaki N., Fretzayas A., et al. High incidence and allelic homogeneity of Wilson disease in 2 isolated populations: A prerequisite for efficient disease prevention programs. J. Pediatr. Gastroenterol. Nutr. 2008;47:334–338. doi: 10.1097/MPG.0b013e31817094f6. PubMed DOI

Espinós C., Ferenci P. Are the new genetic tools for diagnosis of Wilson disease helpful in clinical practice? JHEP Rep. 2020;2:100114. doi: 10.1016/j.jhepr.2020.100114. PubMed DOI PMC

Wallace D.F., Dooley J.S. ATP7B variant penetrance explains differences between genetic and clinical prevalence estimates for Wilson disease. Hum. Genet. 2020;139:1065–1075. doi: 10.1007/s00439-020-02161-3. PubMed DOI

Medici V., Lasalle J.M. Genetics and epigenetics factors of Wilson disease. Ann. Transl. Med. 2019;7:S58. doi: 10.21037/atm.2019.01.67. PubMed DOI PMC

Lalioti V., Tsubota A., Sandoval I.V. Disorders in hepatic copper secretion: Wilson’s disease and pleomorphic syndromes. Semin. Liver Dis. 2017;37:175–188. doi: 10.1055/s-0037-1602764. PubMed DOI

Mordaunt C.E., Kieffer D.A., Shibata N.M., Członkowska A., Litwin T., Weiss K.H., Zhu Y., Bowlus C.L., Sarkar S., Cooper S., et al. Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin. 2019;12:10. doi: 10.1186/s13072-019-0255-z. PubMed DOI PMC

Moini M., To U., Schilsky M.L. Recent advances in Wilson disease. Transl. Gastroenterol. Hepatol. 2021;6:21. doi: 10.21037/tgh-2020-02. PubMed DOI PMC

Stattermayer A.F., Traussnigg S., Dines H.-P., Aigner E., Stauber R., Lackner K., Hofer H., Stift J., Wrba F., Stadlmayr A., et al. Hepatic steatosis in Wilson disease—Role of copper and PNPLA3 mutations. J. Hepatol. 2015;63:156–163. doi: 10.1016/j.jhep.2015.01.034. PubMed DOI

Schiefermeier M., Kollegger H., Madl C., Polli C., Oder W., Kühn H.-J., Berr F., Ferenci P. The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson’s disease. Brain. 2000;123:585–590. doi: 10.1093/brain/123.3.585. PubMed DOI

Medici V., Weiss K.H. Genetic and environmental modifiers of Wilson disease. Handb. Clin. Neurol. 2017;142:35–41. doi: 10.1016/B978-0-444-63625-6.00004-5. PubMed DOI

Simon L., Schaefer M., Reichert J., Stremmel W. Analysis of the human atox1 homologue in Wilson patients. World J. Gastroenterol. 2008;14:2383–2387. doi: 10.3748/wjg.14.2383. PubMed DOI PMC

Bost M., Piguit-Lacroix G., Parant F., Wilson C.M.R. Molecular analysis of Wilson patients: Direct sequencing and MLPA analysis in the ATP7B gene and Atox1 and COMMD1 gene analysis. J. Trace Elem. Med. Biol. 2012;26:97–101. doi: 10.1016/j.jtemb.2012.04.024. PubMed DOI

Kumari N., Kumar A., Pal A., Thapa B.R., Modi M., Prasad R. In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: Plausible role in modulating ATOX1-ATP7B interaction. Mol. Biol. Rep. 2019;46:3307–3313. doi: 10.1007/s11033-019-04791-x. PubMed DOI

Zarina A., Tolmane I., Krumina Z., Tutane A.I., Gailite L. Association of variants in the CP, ATOX1, and COMMD1 genes with Wilson disease symptoms in Latvia. Balk. J. Med. Genet. 2019;21:37–42. doi: 10.2478/bjmg-2019-0023. PubMed DOI PMC

van de Sluis B., Rothuizen J., Pearson P.L., van Oost B., Wijmenga C. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum. Mol. Genet. 2002;11:165–173. doi: 10.1093/hmg/11.2.165. PubMed DOI

Stuehler B., Reichert J., Stremmel W., Schaefer M. Analysis of the human homologue of the canine copper toxicosis gene MURR1. J. Mol. Med. 2004;82:629–634. doi: 10.1007/s00109-004-0557-9. PubMed DOI

Weiss K.H., Merle U., Schaefer M., Ferenci P., Fullekrug J., Stremmel W. Copper toxicosis gene MURR1 is not changed in Wilson disease patients with normal blood ceruloplasmin levels. World J. Gastroenterol. 2006;12:2239–2242. doi: 10.3748/wjg.v12.i14.2239. PubMed DOI PMC

Gupta A., Chattopadhyay I., Mukherjee S., Sengupta M., Das S.K., Ray K. A novel COMMD1 mutation Thr174Met associated with elevated urinary copper and signs of enhanced apoptotic cell death in a Wilson Disease patient. Behav. Brain Funct. 2010;6:33. doi: 10.1186/1744-9081-6-33. PubMed DOI PMC

Weiss K.H., Runz H., Noe B., Gotthardt D.N., Merle U., Ferenci P., Stremmel W., Fuellekrug J. Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J. Inherit. Metab. Dis. 2010;33:S233–S240. doi: 10.1007/s10545-010-9123-5. PubMed DOI

Hafkemeyer P., Schupp M., Storch M., Gertok W., Hausinger D. Excessive iron storage in a patient with Wilson’s disease. J. Mol. Med. 1994;72:134–136. doi: 10.1007/BF00184590. PubMed DOI

Walshe J.M., Cox D.W. Effect of treatment of Wilson’s disease on natural history of haemochromatosis. Lancet. 1998;352:112–113. doi: 10.1016/S0140-6736(98)85017-4. PubMed DOI

Sorbello O., Sini M., Civolani A., Demelia L. HFE gene mutations and Wilson’s disease in Sardinia. Dig. Liver Dis. 2010;42:216–219. doi: 10.1016/j.dld.2009.06.012. PubMed DOI

Pfeffenberger J., Gotthardt D.N., Herrmann T., Seesle J., Merle U., Schirmacher P., Stremmel W., Weiss K.H. Iron metabolism and the role of HFE gene polymorphism in Wilson disease. Liver Int. 2012;32:165–170. doi: 10.1111/j.1478-3231.2011.02661.x. PubMed DOI

Przybylkowski A., Gromadzka G., Czlonkowska A. Polymorphism of metal transporter genes DMT1 and ATP7A in Wilson’s disease. J. Trace Elem. Med. Biol. 2014;28:8–12. doi: 10.1016/j.jtemb.2013.08.002. PubMed DOI

Sibani S., Christensen B., O’Farrall E., Saadi I., Hiou-Tim F., Rosenblatt D.S., Rozen R. Characterization of six novel mutations in the methylenetetrahydrofilate reductase (MTHFR) gene in patients with homocystinuria. Hum. Mutat. 2000;15:280–287. doi: 10.1002/(SICI)1098-1004(200003)15:3<280::AID-HUMU9>3.0.CO;2-I. PubMed DOI

Gromadzka G., Rudnicka M., Chabik G., Przybylkowski A., Czlonkowska A. Genetic variability in the methylenetetrahydroflate reductase gene (MTHFR) affects clinical expression of Wilson’s disease. J. Hepatol. 2011;55:913–919. doi: 10.1016/j.jhep.2011.01.030. PubMed DOI

Poldervaart J., Favier R.P., Penning L.C., van den Ingh T.S., Rothuizen J. Primary hepatitis in dogs: A retrospective review (2002–2006) J. Vet. Intern. Med. 2009;23:72–80. doi: 10.1111/j.1939-1676.2008.0215.x. PubMed DOI

Fieten H., Penning L.C., Leegwater P.A.J., Rothuizen J. New canine models of copper toxicosis: Diagnosis, treatment, and genetics. Ann. N. Y. Acad. Sci. 2014;1314:42–48. doi: 10.1111/nyas.12442. PubMed DOI

Fieten H., Gill Y., Martin A.J., Concilli M., Dirksen K., van Steenbeek F.G., Spee B., van den Ingh T.S., Martens E.C., Festa P., et al. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: A new canine model for copper-metabolism disorders. Dis. Model Mech. 2016;9:25–38. doi: 10.1242/dmm.020263. PubMed DOI PMC

Reuner U., Dinger J. Pregnancy and Wilson disease: Management and outcome of mother and newborns-experiences of a perinatal centre. Ann. Transl. Med. 2019;7((Suppl. 2)):S56. doi: 10.21037/atm.2019.04.40. PubMed DOI PMC

Litwin T., Gromadzka G., Czlonkowska A., Golebiowski M., Poniatowska R. The effect of gender on brain MRI pathology in Wilson’s disease. Metab. Brain Dis. 2013;28:69–75. doi: 10.1007/s11011-013-9378-2. PubMed DOI PMC

European Association for the Study of the Liver. EASL clinical practice guidelines: Wilson’s disease. J. Hepatol. 2012;56:671–685. doi: 10.1016/j.jhep.2011.11.007. PubMed DOI

Medici V., Huster D. Animal models of Wilson disease. Handb. Clin. Neurol. 2017;142:57–70. doi: 10.1016/B978-0-444-63625-6.00006-9. PubMed DOI

Huster D. Chapter 13—Animal models for Wilson disease. In: Kerkar N., Roberts E.A., editors. Clinical and Translational Perspectives on Wilson Disease. Academic Press; Cambridge, MA, USA: 2019. pp. 127–139. DOI

Dusek P., Skoloudik D., Maskova J., Huelnhagen T., Bruha R., Zahorakova D., Niendorf T., Ruzicka E., Schneider S.A., Wuerfel J. Brain iron accumulation in Wilson’s disease: A longitudinal imaging case study during anticopper treatment using 7.0T MRI and transcranial sonography. J. Magn. Reson Imaging. 2018;47:282–285. doi: 10.1002/jmri.25702. PubMed DOI

Litwin T., Dzieżyc K., Karliński M., Chabik G., Czepiel W., Członkowska A. Early neurological worsening in patients with Wilson’s disease. J. Neurol. Sci. 2015;355:162–167. doi: 10.1016/j.jns.2015.06.010. PubMed DOI

Członkowska A., Rodo M., Wierzchowska-Ciok A., Smolinski L., Litwin T. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease. Liver Int. 2018;38:1860–1866. doi: 10.1111/liv.13715. PubMed DOI

Ferenci P., Członkowska A., Merle U., Ferenc S., Gromadzka G., Yurdaydin C., Vogel W., Bruha R., Schmidt H.T., Stremmel W. Late-onset Wilson’s disease. Gastroenterology. 2007;132:1294–1298. doi: 10.1053/j.gastro.2007.02.057. PubMed DOI

Członkowska A., Rodo M., Gromadzka G. Late onset Wilson’s disease: Therapeutic implications. Mov. Disord. 2008;23:896–898. doi: 10.1002/mds.21985. PubMed DOI

Brunet A.S., Marotte S., Guillaud O., Lachaux A. Familial screening in Wilson’s disease: Think at the previous generation. J. Hepatol. 2012;57:1394–1395. doi: 10.1016/j.jhep.2012.07.011. PubMed DOI

Dzieżyc K., Litwin T., Chabik G., Gramza K., Członkowska A. Families with Wilson’s disease in subsequent generations: Clinical and genetic analysis. Mov. Disord. 2014;29:1828–1832. doi: 10.1002/mds.26057. PubMed DOI

Genoud S., Senior A.M., Hare D.J., Double K.L. Meta-analysis of copper and iron in Parkinson’s disease brain and biofluids. Mov. Disord. 2020;35:662–671. doi: 10.1002/mds.27947. PubMed DOI

Davies K.M., Hare D.J., Cottam V., Chen N., Hilgers L., Halliday G., Mercer J.F., Double K.L. Localization of copper and copper transporters in the human brain. Metallomics. 2013;5:43–51. doi: 10.1039/C2MT20151H. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...