Ablation of Gabra5 Influences Corticosterone Levels and Anxiety-like Behavior in Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36833213
PubMed Central
PMC9956889
DOI
10.3390/genes14020285
PII: genes14020285
Knihovny.cz E-zdroje
- Klíčová slova
- GABA receptor, anxiety, behavior, corticosterone, mouse model,
- MeSH
- glukokortikoidy * MeSH
- kortikosteron * MeSH
- lidé MeSH
- myši MeSH
- receptory GABA-A genetika metabolismus MeSH
- receptory GABA metabolismus MeSH
- systém hypofýza - nadledviny metabolismus MeSH
- systém hypotalamus-hypofýza metabolismus MeSH
- úzkost MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GABRA5 protein, human MeSH Prohlížeč
- Gabra5 protein, mouse MeSH Prohlížeč
- glukokortikoidy * MeSH
- kortikosteron * MeSH
- receptory GABA-A MeSH
- receptory GABA MeSH
Stress responses are activated by the hypothalamic-pituitary-adrenal axis (HPA axis), culminating in the release of glucocorticoids. During prolonged periods of secretion of glucocorticoids or inappropriate behavioral responses to a stressor, pathologic conditions may occur. Increased glucocorticoid concentration is linked to generalized anxiety, and there are knowledge gaps regarding its regulation. It is known that the HPA axis is under GABAergic control, but the contribution of the individual subunits of the GABA receptor is largely unknown. In this study, we investigated the relationship between the α5 subunit and corticosterone levels in a new mouse model deficient for Gabra5, which is known to be linked to anxiety disorders in humans and phenologs observed in mice. We observed decreased rearing behavior, suggesting lower anxiety in the Gabra5-/- animals; however, such a phenotype was absent in the open field and elevated plus maze tests. In addition to decreased rearing behavior, we also found decreased levels of fecal corticosterone metabolites in Gabra5-/- mice indicating a lowered stress response. Moreover, based on the electrophysiological recordings where we observed a hyperpolarized state of hippocampal neurons, we hypothesize that the constitutive ablation of the Gabra5 gene leads to functional compensation with other channels or GABA receptor subunits in this model.
Zobrazit více v PubMed
Kagias K., Nehammer C., Pocock R. Neuronal Responses to Physiological Stress. Front. Genet. 2012;3:222. doi: 10.3389/fgene.2012.00222. PubMed DOI PMC
Goodnite P.M. Stress: A concept analysis. Nurs. Forum. 2014;49:71–74. doi: 10.1111/nuf.12044. PubMed DOI
Hill J.W. PVN pathways controlling energy homeostasis. Indian J. Endocrinol. Metab. 2012;16((Suppl. 3)):S627–S636. doi: 10.4103/2230-8210.105581. PubMed DOI PMC
Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006;8:383–395. doi: 10.31887/DCNS.2006.8.4/ssmith. PubMed DOI PMC
Jubb A.W., Boyle S., Hume D.A., Bickmore W.A. Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci. Cell Rep. 2017;21:3022–3031. doi: 10.1016/j.celrep.2017.11.053. PubMed DOI PMC
Raglan G.B., Schmidt L.A., Schulkin J. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment. Endocr. Connect. 2017;6:R1–R7. doi: 10.1530/EC-16-0100. PubMed DOI PMC
Sapolsky R.M. Why Zebras Don’t Get Ulcers: The Acclaimed Guide to Stress, Stress-Related Diseases, and Coping. Holt Paperbacks; New York, NY, USA: 2004.
Cullinan W.E., Ziegler D.R., Herman J.P. Functional role of local GABAergic influences on the HPA axis. Brain Struct. Funct. 2008;213:63–72. doi: 10.1007/s00429-008-0192-2. PubMed DOI
Gunn B., Brown A.R., Lambert J.J., Belelli D. Neurosteroids and GABAA Receptor Interactions: A Focus on Stress. Front. Neurosci. 2011;5:131. doi: 10.3389/fnins.2011.00131. PubMed DOI PMC
Cullinan W.E., Helmreich D.L., Watson S.J. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J. Comp. Neurol. 1996;368:88–99. doi: 10.1002/(SICI)1096-9861(19960422)368:1<88::AID-CNE6>3.0.CO;2-G. PubMed DOI
Everington E.A., Gibbard A.G., Swinny J.D., Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front. Mol. Neurosci. 2018;11:18. doi: 10.3389/fnmol.2018.00018. PubMed DOI PMC
Jacob T.C. Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors. Front. Mol. Neurosci. 2019;12:179. doi: 10.3389/fnmol.2019.00179. PubMed DOI PMC
Sarkar J., Wakefield S., MacKenzie G., Moss S.J., Maguire J. Neurosteroidogenesis is required for the physiological response to stress: Role of neurosteroid-sensitive GABAA receptors. J. Neurosci. 2011;31:18198–18210. doi: 10.1523/JNEUROSCI.2560-11.2011. PubMed DOI PMC
Bird L.M. Angelman syndrome: Review of clinical and molecular aspects. Appl. Clin. Genet. 2014;7:93–104. doi: 10.2147/TACG.S57386. PubMed DOI PMC
Hodges L.M., Fyer A.J., Weissman M.M., Logue M.W., Haghighi F., Evgrafov O., Rotondo A., Knowles J.A., Hamilton S.P. Evidence for linkage and association of GABRB3 and GABRA5 to panic disorder. Neuropsychopharmacology. 2014;39:2423–2431. doi: 10.1038/npp.2014.92. PubMed DOI PMC
Magnin E., Francavilla R., Amalyan S., Gervais E., David L.S., Luo X., Topolnik L. Input-Specific Synaptic Location and Function of the α5 GABAA Receptor Subunit in the Mouse CA1 Hippocampal Neurons. J. Neurosci. 2019;39:788–801. doi: 10.1523/JNEUROSCI.0567-18.2018. PubMed DOI PMC
Navarro J.F., Burón E., Martın-López M. Anxiogenic-like activity of L-655,708, a selective ligand for the benzodiazepine site of GABA(A) receptors which contain the α-5 subunit, in the elevated plus-maze test. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2002;26:1389–1392. doi: 10.1016/S0278-5846(02)00305-6. PubMed DOI
Behlke L.M., Foster R.A., Liu J., Benke D., Benham R.S., Nathanson A.J., Yee B.K., Zeilhofer H.U., Engin E., Rudolph U. A Pharmacogenetic ‘Restriction-of-Function’ Approach Reveals Evidence for Anxiolytic-Like Actions Mediated by α5-Containing GABAA Receptors in Mice. Neuropsychopharmacology. 2016;41:2492–2501. doi: 10.1038/npp.2016.49. PubMed DOI PMC
Olsen R.W., Sieghart W. GABA A receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56:141–148. doi: 10.1016/j.neuropharm.2008.07.045. PubMed DOI PMC
Myers B., McKlveen J.M., Herman J.P. Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Front. Neuroendocrinol. 2014;35:180–196. doi: 10.1016/j.yfrne.2013.12.003. PubMed DOI PMC
Martin L.J., Bonin R.P., Orser B.A. The physiological properties and therapeutic potential of alpha5-GABAA receptors. Biochem. Soc. Trans. 2009;37:1334–1337. doi: 10.1042/BST0371334. PubMed DOI
Shin L.M., Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010;35:169–191. doi: 10.1038/npp.2009.83. PubMed DOI PMC
Herman J.P., McKlveen J.M., Ghosal S., Kopp B., Wulsin A., Makinson R., Scheimann J., Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016;6:603–621. PubMed PMC
Cominski T.P., Jiao X., Catuzzi J.E., Stewart A.L., Pang K.C.H. The role of the hippocampus in avoidance learning and anxiety vulnerability. Front. Behav. Neurosci. 2014;8:273. doi: 10.3389/fnbeh.2014.00273. PubMed DOI PMC
Jimenez J.C., Su K., Goldberg A.R., Luna V.M., Biane J.S., Ordek G., Zhou P., Ong S.K., Wright M.A., Zweifel L., et al. Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron. 2018;97:670–683.e6. doi: 10.1016/j.neuron.2018.01.016. PubMed DOI PMC
Caraiscos V.B., Elliott E.M., You-Ten K.E., Cheng V.Y., Belelli D., Newell J.G., Jackson M.F., Lambert J.J., Rosahl T.W., Wafford K.A., et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing γ-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. USA. 2004;101:3662–3667. doi: 10.1073/pnas.0307231101. PubMed DOI PMC
Collinson N., Kuenzi F.M., Jarolimek W., Maubach K.A., Cothliff R., Sur C., Smith A., Otu F.M., Howell O., Atack J.R., et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α 5 subunit of the GABAA receptor. J. Neurosci. 2002;22:5572–5580. doi: 10.1523/JNEUROSCI.22-13-05572.2002. PubMed DOI PMC
Kulesskaya N., Voikar V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: Role of equipment and procedure. Physiol. Behav. 2014;133:30–38. doi: 10.1016/j.physbeh.2014.05.006. PubMed DOI
Shoji H., Takao K., Hattori S., Miyakawa T. Contextual and cued fear conditioning test using a video analyzing system in mice. J. Vis. Exp. 2014;85:e50871. doi: 10.3791/50871. PubMed DOI PMC
Martin L.J., Zurek A.A., MacDonald J.F., Roder J.C., Jackson M.F., Orser B.A. α5GABAAReceptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory. J. Neurosci. 2010;30:5269–5282. doi: 10.1523/JNEUROSCI.4209-09.2010. PubMed DOI PMC
Glykys J., Mody I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J. Neurophysiol. 2006;95:2796–2807. doi: 10.1152/jn.01122.2005. PubMed DOI
Morla L., Shore O., Lynch I.J., Merritt M.E., Wingo C.S. A noninvasive method to study the evolution of extracellular fluid volume in mice using time-domain nuclear magnetic resonance. Am. J. Physiol. Ren. Physiol. 2020;319:F115–F124. doi: 10.1152/ajprenal.00377.2019. PubMed DOI
Mitra R., Sapolsky R.M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA. 2008;105:5573–5578. doi: 10.1073/pnas.0705615105. PubMed DOI PMC
Sturman O., Germain P.-L., Bohacek J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–452. doi: 10.1080/10253890.2018.1438405. PubMed DOI
Izzi-Engbeaya C., Ma Y., Buckley N.W., Ratnasabapathy R., Richardson E., Counsell J.R., Fernandes-Freitas I., Norton M., Farooq G., Mirza Z., et al. Effects of corticosterone within the hypothalamic arcuate nucleus on food intake and body weight in male rats. Mol. Metab. 2020;36:100972. doi: 10.1016/j.molmet.2020.02.015. PubMed DOI PMC
Serwanski D.R., Miralles C.P., Christie S.B., Mehta A.K., Li X., De Blas A.L. Synaptic and nonsynaptic localization of GABAA receptors containing the alpha5 subunit in the rat brain. J. Comp. Neurol. 2006;499:458–470. doi: 10.1002/cne.21115. PubMed DOI PMC
Bonin R.P., Martin L.J., MacDonald J.F., Orser B.A. Alpha5GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons. J. Neurophysiol. 2007;98:2244–2254. doi: 10.1152/jn.00482.2007. PubMed DOI
Syding L.A., Nickl P., Kasparek P., Sedlacek R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells. 2020;9:993. doi: 10.3390/cells9040993. PubMed DOI PMC
Gasser P.J., Lowry C.A., Orchinik M. 41—Rapid corticosteroid actions on behavior: Mechanisms and implications. In: Pfaff D.W., Joels M., editors. Hormones, Brain and Behavior. 2nd ed. Academic Press; San Diego, CA, USA: 2009. pp. 1365–1397.
Lidster K., Owen K., Browne W.J., Prescott M.J. Cage aggression in group-housed laboratory male mice: An international data crowdsourcing project. Sci. Rep. 2019;9:15211. doi: 10.1038/s41598-019-51674-z. PubMed DOI PMC
Giammanco M., Tabacchi G., Giammanco S., Di Majo D., La Guardia M. Testosterone and aggressiveness. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2005;11:RA136–RA145. PubMed
Piantadosi S.C., French B.J., Poe M.M., Timić T., Marković B.D., Pabba M., Seney M.L., Oh H., Orser B.A., Savić M.M., et al. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABAA Receptor Positive Allosteric Modulator. Front. Pharmacol. 2016;7:446. doi: 10.3389/fphar.2016.00446. PubMed DOI PMC
Lever C., Burton S., O’Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev. Neurosci. 2006;17:111–133. doi: 10.1515/REVNEURO.2006.17.1-2.111. PubMed DOI
Blanchard D.C., Blanchard R.J., Rodgers R.J. Risk Assessment and animal models of anxiety. In: Olivier B., Mos J., Slangen J.L., editors. Animal Models in Psychopharmacology. Birkhäuser Basel; Basel, Switzerland: 1991. pp. 117–134.
Cryan J.F., Sweeney F.F. The age of anxiety: Role of animal models of anxiolytic action in drug discovery. Br. J. Pharmacol. 2011;164:1129–1161. doi: 10.1111/j.1476-5381.2011.01362.x. PubMed DOI PMC
Balon R., Starcevic V. Role of Benzodiazepines in Anxiety Disorders. Anxiety Disord. 2020;1191:367–388. PubMed
El-Brolosy M.A., Stainier D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13:e1006780. doi: 10.1371/journal.pgen.1006780. PubMed DOI PMC
Crestani F., Keist R., Fritschy J.-M., Benke D., Vogt K., Prut L., Bluthmann H., Mohler H., Rudolph H. Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc. Natl. Acad. Sci. USA. 2002;99:8980–8985. doi: 10.1073/pnas.142288699. PubMed DOI PMC
Martin L.J., Oh G.H.T., Orser B.A. Etomidate targets alpha5 γ-aminobutyric acid subtype A receptors to regulate synaptic plasticity and memory blockade. Anesthesiology. 2009;111:1025–1035. doi: 10.1097/ALN.0b013e3181bbc961. PubMed DOI
Bonin R.P., Zurek A.A., Yu J., Bayliss D.A., Orser B.A. Hyperpolarization-Activated Current (Ih) Is Reduced in Hippocampal Neurons from Gabra5−/− Mice. PLoS ONE. 2013;8:e58679. doi: 10.1371/journal.pone.0058679. PubMed DOI PMC
Glykys J., Mann E.O., Mody I. Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J. Neurosci. 2008;28:1421–1426. doi: 10.1523/JNEUROSCI.4751-07.2008. PubMed DOI PMC
Brickley S.G., Revilla V., Cull-Candy S.G., Wisden W., Farrant M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature. 2001;409:88–92. doi: 10.1038/35051086. PubMed DOI
Jin C., Kang H., Yoo T., Ryu J.R., Yoo Y.-E., Ma R., Zhang Y., Kang H.R., Kim Y., Seong H., et al. The Neomycin Resistance Cassette in the Targeted Allele of Shank3B Knock-Out Mice Has Potential Off-Target Effects to Produce an Unusual Shank3 Isoform. Front. Mol. Neurosci. 2021;13:614435. doi: 10.3389/fnmol.2020.614435. PubMed DOI PMC