Ablation of Gabra5 Influences Corticosterone Levels and Anxiety-like Behavior in Mice

. 2023 Jan 21 ; 14 (2) : . [epub] 20230121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36833213

Stress responses are activated by the hypothalamic-pituitary-adrenal axis (HPA axis), culminating in the release of glucocorticoids. During prolonged periods of secretion of glucocorticoids or inappropriate behavioral responses to a stressor, pathologic conditions may occur. Increased glucocorticoid concentration is linked to generalized anxiety, and there are knowledge gaps regarding its regulation. It is known that the HPA axis is under GABAergic control, but the contribution of the individual subunits of the GABA receptor is largely unknown. In this study, we investigated the relationship between the α5 subunit and corticosterone levels in a new mouse model deficient for Gabra5, which is known to be linked to anxiety disorders in humans and phenologs observed in mice. We observed decreased rearing behavior, suggesting lower anxiety in the Gabra5-/- animals; however, such a phenotype was absent in the open field and elevated plus maze tests. In addition to decreased rearing behavior, we also found decreased levels of fecal corticosterone metabolites in Gabra5-/- mice indicating a lowered stress response. Moreover, based on the electrophysiological recordings where we observed a hyperpolarized state of hippocampal neurons, we hypothesize that the constitutive ablation of the Gabra5 gene leads to functional compensation with other channels or GABA receptor subunits in this model.

Zobrazit více v PubMed

Kagias K., Nehammer C., Pocock R. Neuronal Responses to Physiological Stress. Front. Genet. 2012;3:222. doi: 10.3389/fgene.2012.00222. PubMed DOI PMC

Goodnite P.M. Stress: A concept analysis. Nurs. Forum. 2014;49:71–74. doi: 10.1111/nuf.12044. PubMed DOI

Hill J.W. PVN pathways controlling energy homeostasis. Indian J. Endocrinol. Metab. 2012;16((Suppl. 3)):S627–S636. doi: 10.4103/2230-8210.105581. PubMed DOI PMC

Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006;8:383–395. doi: 10.31887/DCNS.2006.8.4/ssmith. PubMed DOI PMC

Jubb A.W., Boyle S., Hume D.A., Bickmore W.A. Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci. Cell Rep. 2017;21:3022–3031. doi: 10.1016/j.celrep.2017.11.053. PubMed DOI PMC

Raglan G.B., Schmidt L.A., Schulkin J. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment. Endocr. Connect. 2017;6:R1–R7. doi: 10.1530/EC-16-0100. PubMed DOI PMC

Sapolsky R.M. Why Zebras Don’t Get Ulcers: The Acclaimed Guide to Stress, Stress-Related Diseases, and Coping. Holt Paperbacks; New York, NY, USA: 2004.

Cullinan W.E., Ziegler D.R., Herman J.P. Functional role of local GABAergic influences on the HPA axis. Brain Struct. Funct. 2008;213:63–72. doi: 10.1007/s00429-008-0192-2. PubMed DOI

Gunn B., Brown A.R., Lambert J.J., Belelli D. Neurosteroids and GABAA Receptor Interactions: A Focus on Stress. Front. Neurosci. 2011;5:131. doi: 10.3389/fnins.2011.00131. PubMed DOI PMC

Cullinan W.E., Helmreich D.L., Watson S.J. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J. Comp. Neurol. 1996;368:88–99. doi: 10.1002/(SICI)1096-9861(19960422)368:1<88::AID-CNE6>3.0.CO;2-G. PubMed DOI

Everington E.A., Gibbard A.G., Swinny J.D., Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front. Mol. Neurosci. 2018;11:18. doi: 10.3389/fnmol.2018.00018. PubMed DOI PMC

Jacob T.C. Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors. Front. Mol. Neurosci. 2019;12:179. doi: 10.3389/fnmol.2019.00179. PubMed DOI PMC

Sarkar J., Wakefield S., MacKenzie G., Moss S.J., Maguire J. Neurosteroidogenesis is required for the physiological response to stress: Role of neurosteroid-sensitive GABAA receptors. J. Neurosci. 2011;31:18198–18210. doi: 10.1523/JNEUROSCI.2560-11.2011. PubMed DOI PMC

Bird L.M. Angelman syndrome: Review of clinical and molecular aspects. Appl. Clin. Genet. 2014;7:93–104. doi: 10.2147/TACG.S57386. PubMed DOI PMC

Hodges L.M., Fyer A.J., Weissman M.M., Logue M.W., Haghighi F., Evgrafov O., Rotondo A., Knowles J.A., Hamilton S.P. Evidence for linkage and association of GABRB3 and GABRA5 to panic disorder. Neuropsychopharmacology. 2014;39:2423–2431. doi: 10.1038/npp.2014.92. PubMed DOI PMC

Magnin E., Francavilla R., Amalyan S., Gervais E., David L.S., Luo X., Topolnik L. Input-Specific Synaptic Location and Function of the α5 GABAA Receptor Subunit in the Mouse CA1 Hippocampal Neurons. J. Neurosci. 2019;39:788–801. doi: 10.1523/JNEUROSCI.0567-18.2018. PubMed DOI PMC

Navarro J.F., Burón E., Martın-López M. Anxiogenic-like activity of L-655,708, a selective ligand for the benzodiazepine site of GABA(A) receptors which contain the α-5 subunit, in the elevated plus-maze test. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2002;26:1389–1392. doi: 10.1016/S0278-5846(02)00305-6. PubMed DOI

Behlke L.M., Foster R.A., Liu J., Benke D., Benham R.S., Nathanson A.J., Yee B.K., Zeilhofer H.U., Engin E., Rudolph U. A Pharmacogenetic ‘Restriction-of-Function’ Approach Reveals Evidence for Anxiolytic-Like Actions Mediated by α5-Containing GABAA Receptors in Mice. Neuropsychopharmacology. 2016;41:2492–2501. doi: 10.1038/npp.2016.49. PubMed DOI PMC

Olsen R.W., Sieghart W. GABA A receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56:141–148. doi: 10.1016/j.neuropharm.2008.07.045. PubMed DOI PMC

Myers B., McKlveen J.M., Herman J.P. Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Front. Neuroendocrinol. 2014;35:180–196. doi: 10.1016/j.yfrne.2013.12.003. PubMed DOI PMC

Martin L.J., Bonin R.P., Orser B.A. The physiological properties and therapeutic potential of alpha5-GABAA receptors. Biochem. Soc. Trans. 2009;37:1334–1337. doi: 10.1042/BST0371334. PubMed DOI

Shin L.M., Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010;35:169–191. doi: 10.1038/npp.2009.83. PubMed DOI PMC

Herman J.P., McKlveen J.M., Ghosal S., Kopp B., Wulsin A., Makinson R., Scheimann J., Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016;6:603–621. PubMed PMC

Cominski T.P., Jiao X., Catuzzi J.E., Stewart A.L., Pang K.C.H. The role of the hippocampus in avoidance learning and anxiety vulnerability. Front. Behav. Neurosci. 2014;8:273. doi: 10.3389/fnbeh.2014.00273. PubMed DOI PMC

Jimenez J.C., Su K., Goldberg A.R., Luna V.M., Biane J.S., Ordek G., Zhou P., Ong S.K., Wright M.A., Zweifel L., et al. Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron. 2018;97:670–683.e6. doi: 10.1016/j.neuron.2018.01.016. PubMed DOI PMC

Caraiscos V.B., Elliott E.M., You-Ten K.E., Cheng V.Y., Belelli D., Newell J.G., Jackson M.F., Lambert J.J., Rosahl T.W., Wafford K.A., et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing γ-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. USA. 2004;101:3662–3667. doi: 10.1073/pnas.0307231101. PubMed DOI PMC

Collinson N., Kuenzi F.M., Jarolimek W., Maubach K.A., Cothliff R., Sur C., Smith A., Otu F.M., Howell O., Atack J.R., et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α 5 subunit of the GABAA receptor. J. Neurosci. 2002;22:5572–5580. doi: 10.1523/JNEUROSCI.22-13-05572.2002. PubMed DOI PMC

Kulesskaya N., Voikar V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: Role of equipment and procedure. Physiol. Behav. 2014;133:30–38. doi: 10.1016/j.physbeh.2014.05.006. PubMed DOI

Shoji H., Takao K., Hattori S., Miyakawa T. Contextual and cued fear conditioning test using a video analyzing system in mice. J. Vis. Exp. 2014;85:e50871. doi: 10.3791/50871. PubMed DOI PMC

Martin L.J., Zurek A.A., MacDonald J.F., Roder J.C., Jackson M.F., Orser B.A. α5GABAAReceptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory. J. Neurosci. 2010;30:5269–5282. doi: 10.1523/JNEUROSCI.4209-09.2010. PubMed DOI PMC

Glykys J., Mody I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J. Neurophysiol. 2006;95:2796–2807. doi: 10.1152/jn.01122.2005. PubMed DOI

Morla L., Shore O., Lynch I.J., Merritt M.E., Wingo C.S. A noninvasive method to study the evolution of extracellular fluid volume in mice using time-domain nuclear magnetic resonance. Am. J. Physiol. Ren. Physiol. 2020;319:F115–F124. doi: 10.1152/ajprenal.00377.2019. PubMed DOI

Mitra R., Sapolsky R.M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA. 2008;105:5573–5578. doi: 10.1073/pnas.0705615105. PubMed DOI PMC

Sturman O., Germain P.-L., Bohacek J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–452. doi: 10.1080/10253890.2018.1438405. PubMed DOI

Izzi-Engbeaya C., Ma Y., Buckley N.W., Ratnasabapathy R., Richardson E., Counsell J.R., Fernandes-Freitas I., Norton M., Farooq G., Mirza Z., et al. Effects of corticosterone within the hypothalamic arcuate nucleus on food intake and body weight in male rats. Mol. Metab. 2020;36:100972. doi: 10.1016/j.molmet.2020.02.015. PubMed DOI PMC

Serwanski D.R., Miralles C.P., Christie S.B., Mehta A.K., Li X., De Blas A.L. Synaptic and nonsynaptic localization of GABAA receptors containing the alpha5 subunit in the rat brain. J. Comp. Neurol. 2006;499:458–470. doi: 10.1002/cne.21115. PubMed DOI PMC

Bonin R.P., Martin L.J., MacDonald J.F., Orser B.A. Alpha5GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons. J. Neurophysiol. 2007;98:2244–2254. doi: 10.1152/jn.00482.2007. PubMed DOI

Syding L.A., Nickl P., Kasparek P., Sedlacek R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells. 2020;9:993. doi: 10.3390/cells9040993. PubMed DOI PMC

Gasser P.J., Lowry C.A., Orchinik M. 41—Rapid corticosteroid actions on behavior: Mechanisms and implications. In: Pfaff D.W., Joels M., editors. Hormones, Brain and Behavior. 2nd ed. Academic Press; San Diego, CA, USA: 2009. pp. 1365–1397.

Lidster K., Owen K., Browne W.J., Prescott M.J. Cage aggression in group-housed laboratory male mice: An international data crowdsourcing project. Sci. Rep. 2019;9:15211. doi: 10.1038/s41598-019-51674-z. PubMed DOI PMC

Giammanco M., Tabacchi G., Giammanco S., Di Majo D., La Guardia M. Testosterone and aggressiveness. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2005;11:RA136–RA145. PubMed

Piantadosi S.C., French B.J., Poe M.M., Timić T., Marković B.D., Pabba M., Seney M.L., Oh H., Orser B.A., Savić M.M., et al. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABAA Receptor Positive Allosteric Modulator. Front. Pharmacol. 2016;7:446. doi: 10.3389/fphar.2016.00446. PubMed DOI PMC

Lever C., Burton S., O’Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev. Neurosci. 2006;17:111–133. doi: 10.1515/REVNEURO.2006.17.1-2.111. PubMed DOI

Blanchard D.C., Blanchard R.J., Rodgers R.J. Risk Assessment and animal models of anxiety. In: Olivier B., Mos J., Slangen J.L., editors. Animal Models in Psychopharmacology. Birkhäuser Basel; Basel, Switzerland: 1991. pp. 117–134.

Cryan J.F., Sweeney F.F. The age of anxiety: Role of animal models of anxiolytic action in drug discovery. Br. J. Pharmacol. 2011;164:1129–1161. doi: 10.1111/j.1476-5381.2011.01362.x. PubMed DOI PMC

Balon R., Starcevic V. Role of Benzodiazepines in Anxiety Disorders. Anxiety Disord. 2020;1191:367–388. PubMed

El-Brolosy M.A., Stainier D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13:e1006780. doi: 10.1371/journal.pgen.1006780. PubMed DOI PMC

Crestani F., Keist R., Fritschy J.-M., Benke D., Vogt K., Prut L., Bluthmann H., Mohler H., Rudolph H. Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc. Natl. Acad. Sci. USA. 2002;99:8980–8985. doi: 10.1073/pnas.142288699. PubMed DOI PMC

Martin L.J., Oh G.H.T., Orser B.A. Etomidate targets alpha5 γ-aminobutyric acid subtype A receptors to regulate synaptic plasticity and memory blockade. Anesthesiology. 2009;111:1025–1035. doi: 10.1097/ALN.0b013e3181bbc961. PubMed DOI

Bonin R.P., Zurek A.A., Yu J., Bayliss D.A., Orser B.A. Hyperpolarization-Activated Current (Ih) Is Reduced in Hippocampal Neurons from Gabra5−/− Mice. PLoS ONE. 2013;8:e58679. doi: 10.1371/journal.pone.0058679. PubMed DOI PMC

Glykys J., Mann E.O., Mody I. Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J. Neurosci. 2008;28:1421–1426. doi: 10.1523/JNEUROSCI.4751-07.2008. PubMed DOI PMC

Brickley S.G., Revilla V., Cull-Candy S.G., Wisden W., Farrant M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature. 2001;409:88–92. doi: 10.1038/35051086. PubMed DOI

Jin C., Kang H., Yoo T., Ryu J.R., Yoo Y.-E., Ma R., Zhang Y., Kang H.R., Kim Y., Seong H., et al. The Neomycin Resistance Cassette in the Targeted Allele of Shank3B Knock-Out Mice Has Potential Off-Target Effects to Produce an Unusual Shank3 Isoform. Front. Mol. Neurosci. 2021;13:614435. doi: 10.3389/fnmol.2020.614435. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...