Enzyme Conditioning of Chicken Collagen and Taguchi Design of Experiments Enhancing the Yield and Quality of Prepared Gelatins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36835063
PubMed Central
PMC9960116
DOI
10.3390/ijms24043654
PII: ijms24043654
Knihovny.cz E-zdroje
- Klíčová slova
- Taguchi design, biomaterials, by-product, collagen, enzyme conditioning, gelatin, mechanically deboned chicken meat, zero-waste,
- MeSH
- kolagen * chemie MeSH
- kur domácí MeSH
- potraviny MeSH
- skot MeSH
- teplota MeSH
- želatina * chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen * MeSH
- želatina * MeSH
During the production of mechanically deboned chicken meat (MDCM), a by-product is created that has no adequate use and is mostly disposed of in rendering plants. Due to the high content of collagen, it is a suitable raw material for the production of gelatin and hydrolysates. The purpose of the paper was to process the MDCM by-product into gelatin by 3-step extraction. An innovative method was used to prepare the starting raw material for gelatin extraction, demineralization in HCl, and conditioning with a proteolytic enzyme. A Taguchi design with two process factors (extraction temperature and extraction time) was used at three levels (42, 46, and 50 °C; 20, 40, and 60 min) to optimize the processing of the MDCM by-product into gelatins. The gel-forming and surface properties of the prepared gelatins were analyzed in detail. Depending on the processing conditions, gelatins are prepared with a gel strength of up to 390 Bloom, a viscosity of 0.9-6.8 mPa·s, a melting point of 29.9-38.4 °C, a gelling point of 14.9-17.6 °C, excellent water- and fat-holding capacity, and good foaming and emulsifying capacity and stability. The advantage of MDCM by-product processing technology is a very high degree of conversion (up to 77%) of the starting collagen raw material to gelatins and the preparation of 3 qualitatively different gelatin fractions suitable for a wide range of food, pharmaceutical, and cosmetic applications. Gelatins prepared from MDCM by-product can expand the offer of gelatins from other than beef and pork tissues.
Zobrazit více v PubMed
Djagny K.B., Wang Z., Xu S. Gelatin: A valuable protein for food and pharmaceutical industries, review. Crit. Rev. Food Sci. Nutr. 2001;41:481–492. doi: 10.1080/20014091091904. PubMed DOI
Schrieber R., Gareis H. Gelatine Handbook—Theory and Industrial Practice. 1st ed. Wiley-VCH; Weinheim, Germany: 2007. pp. 163–295.
Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC
Gelatin Market Analysis. Grand View Research, Inc.; San Francisco, CA, USA: 2019. Excel file.
Abedinia A., Nafchi A.M., Sharifi M., Ghalambor P., Oladzadabbasabadi N., Ariffin F., Huda N. Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020;104:14–26. doi: 10.1016/j.tifs.2020.08.001. DOI
Choe J., Kim H.Y. Effects of chicken feet gelatin extracted at different temperatures and wheat fiber with different particle sizes on the physicochemical properties of gels. Poult. Sci. 2018;97:1082–1088. doi: 10.3382/ps/pex381. PubMed DOI
Sarbon N.M., Nazlin F.B., Howell K. Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll. 2013;30:143–151. doi: 10.1016/j.foodhyd.2012.05.009. DOI
Kim T.K., Ham Y.K., Shin D.M., Kim H.W., Jang H.W., Kim Y.B., Choi Y.S. Extraction of crude gelatin from duck skin: Effects of heating methods on gelatin yield. Poult. Sci. 2020;99:590–596. doi: 10.3382/ps/pez519. PubMed DOI PMC
Abedinia A., Ariffin F., Huda N., Nafchi A.M. Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment. Int. J. Biol. Macromol. 2017;98:586–594. doi: 10.1016/j.ijbiomac.2017.01.139. PubMed DOI
Saenmuang S., Phothiset S., Chumnanka C. Extraction and characterization of gelatin from black-bone chicken by-products. Food Sci. Biotechnol. 2020;29:469–478. doi: 10.1007/s10068-019-00696-4. PubMed DOI PMC
Yuliani D., Awalsasi D., Jannah A. Characterization of gelatin profile of chicken broiler (Gallus domestica) bone using SDS-PAGE electrophoresis. Alchemy–J. Chem. 2019;7:7–12. doi: 10.18860/al.v7i1.7437. DOI
Du L., Khiari Z., Pietrasik Z., Betti M. Physicochemical and functional properties of gelatins extracted from turkey and chicken heads. Poult. Sci. 2013;92:2463–2474. doi: 10.3382/ps.2013-03161. PubMed DOI
Zhang T., Sun R., Ding M., Tao L., Liu L., Tao N., Wang X., Zhong J. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of tilapia skin gelatins. Food Chem. 2020;328:127114. doi: 10.1016/j.foodchem.2020.127114. PubMed DOI
Chandra M.V., Shamasundar B.A. Rheological properties of gelatin prepared from the swim bladders of freshwater fish Catla catla. Food Hydrocoll. 2015;48:47–54. doi: 10.1016/j.foodhyd.2015.01.022. DOI
Akagündüz Y., Mosquera M., Giménez B., Alemán A., Montero P., Gómez-Guillén M.C. Sea bream bones and scales as a source of gelatin and ACE inhibitory peptides. LWT-Food Sci. Technol. 2014;55:579–585. doi: 10.1016/j.lwt.2013.10.026. DOI
Liu H.Y., Han J., Guo S.D. Characteristics of the gelatin extracted from Channel Catfish (Ictalurus Punctatus) head bones. LWT-Food Sci. Technol. 2009;42:540–544. doi: 10.1016/j.lwt.2008.07.013. DOI
Jamilah B., Tan K.W., Umi Hartina M.R., Azizah A. Gelatins from three cultured freshwater fish skins obtained by liming process. Food Hydrocoll. 2011;25:1256–1260. doi: 10.1016/j.foodhyd.2010.11.023. DOI
Tümerkan E.T.A., Cansu Ü., Boran G., Regenstein J.M., Özoğul F. Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chem. 2019;287:273–279. doi: 10.1016/j.foodchem.2019.02.088. PubMed DOI
Norziah M.H., Al-Hassan A., Khairulnizam A.B., Mordi M.N., Norita M. Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties. Food Hydrocoll. 2009;23:1610–1616. doi: 10.1016/j.foodhyd.2008.12.004. DOI
Sinthusamran S., Benjakul S., Kishimura H. Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem. 2014;152:276–284. doi: 10.1016/j.foodchem.2013.11.109. PubMed DOI
Jridi M., Nasri R., Lassoued I., Souissi N., Mbarek A., Barkia A., Nasri M. Chemical and biophysical properties of gelatins extracted from alkali-pretreated skin of cuttlefish (Sepia officinalis) using pepsin. Food Res. Int. 2013;54:1680–1687. doi: 10.1016/j.foodres.2013.09.026. DOI
Badway H.M.R., Abd El-Moniem S.M., Soliman A.M., Rabie M.A. Physicochemical properties of gelatin extracted from Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) fish skins. Zagazig J. Agric. Res. 2019;46:1529–1537. doi: 10.21608/zjar.2019.48170. DOI
Peterková P., Lapčík L., Jr. Collagen—Properties, modifications and applications. Chem. Listy. 2000;94:371–379. (In Czech)
Ma Y., Zeng Y., Ma X., Yang R., Zhao W. A simple and eco-friendly method of gelatin production from bone: One-step biocatalysis. J. Clean. Prod. 2019;209:916–926. doi: 10.1016/j.jclepro.2018.10.313. DOI
Pereira A.G.T., Ramos E.M., Teixeira J.T., Cardoso G.P., Ramos A.L.S., Fontes P.R. Effects of the addition of mechanically deboned poultry meat and collagen fibers on quality characteristics of frankfurter-type sausages. Meat Sci. 2011;89:519–525. doi: 10.1016/j.meatsci.2011.05.022. PubMed DOI
Yuste J., Mor-Mur M., Capellas M., Guamis B., Pla R. Mechanically recovered poultry meat sausages manufactured with high hydrostatic pressure. Poult. Sci. 1999;78:914–921. doi: 10.1093/ps/78.6.914. PubMed DOI
Viuda-Martos M., Fernández-López J., Pérez-Álvarez J.A. Mechanical Deboning. In: Hui Y.H., Aalhus J.L., Cocolin L., Guerrero-Legarreta I., Nollet L.M., Purchas R.W., Schilling M.W., Stanfield P., Xiong Y.L., editors. Handbook of Meat and Meat Processing. Taylor & Francis Inc; Abingdon, UK: 2012. Chapter 24.
Daros F.G., Masson M.L., Amico S.C. The influence of the addition of mechanically deboned poultry meat on the rheological properties of sausage. J. Food Eng. 2005;68:185–189. doi: 10.1016/j.jfoodeng.2004.05.030. DOI
Massingue A.A., de Almeida Torres F.R., Fontes P.R., de Lemos S.R.A., Fontes E.A.F., Perez J.R.O., Ramos E.M. Effect of mechanically deboned poultry meat content on technological properties and sensory characteristics of lamb and mutton sausages. Asian-Australas J. Anim. Sci. 2018;31:576–584. doi: 10.5713/ajas.17.0471. PubMed DOI PMC
Cheow C.S., Norizah M.S., Kyaw Z.Y., Howell N.K. Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma) Food Chem. 2007;101:386–391. doi: 10.1016/j.foodchem.2006.01.046. DOI
Gómez-Guillén M.C., Turnay J., Fernández-Díaz M.D., Ulmo N., Lizarbe M.A., Montero P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002;16:25–34. doi: 10.1016/S0268-005X(01)00035-2. DOI
Eysturskarð J., Haug I.J., Elharfaoui N., Djabourov M., Draget K.I. Structural and mechanical properties of fish gelatin as a function of extraction conditions. Food Hydrocoll. 2009;23:1702–1711. doi: 10.1016/j.foodhyd.2009.01.008. DOI
Lin L., Regenstein J.M., Lv S., Lu J., Jiang S. An overview of gelatin derived from aquatic animals: Properties and modification. Trends Food Sci. Technol. 2017;68:102–112. doi: 10.1016/j.tifs.2017.08.012. DOI
Ogawa M., Portier R.J., Moody M.W., Bell J., Schexnayder M.A., Losso J.N. Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus) Food Chem. 2004;88:495–501. doi: 10.1016/j.foodchem.2004.02.006. DOI
Yang H., Wang Y. Effects of concentration on nanostructural images and physical properties of gelatin from channel catfish skins. Food Hydrocoll. 2009;23:577–584. doi: 10.1016/j.foodhyd.2008.04.016. DOI
Haug I.J., Draget K.I., Smidsrød O. Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll. 2004;18:203–213. doi: 10.1016/S0268-005X(03)00065-1. DOI
Jamilah B., Harvinder K.G. Properties of gelatins from skins of fish—Black tilapia (Oreochromis mossambicus) and red tilapia (Orchromis nilotica) Food Chem. 2002;77:81–84. doi: 10.1016/S0308-8146(01)00328-4. DOI
Saxena A., Sachin K., Bohidar H.B., Verma A.K. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids Surf. B Biointerfaces. 2005;45:42–48. doi: 10.1016/j.colsurfb.2005.07.005. PubMed DOI
Muyonga J.H., Cole C.G.B., Duodu K.G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatifrom skins and bones of young and adult Nile perch (Lates niloticus) Food Chem. 2004;86:325–332. doi: 10.1016/j.foodchem.2003.09.038. DOI
Badii F., Howell N.K. Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocoll. 2006;20:630–640. doi: 10.1016/j.foodhyd.2005.06.006. DOI
Mokrejš P., Gál R., Pavlačková J., Janáčová D. Valorization of a by-product from the production of mechanically deboned chicken meat for preparation of gelatins. Molecules. 2021;26:349. doi: 10.3390/molecules26020349. PubMed DOI PMC
Rafieian F., Keramat J., Kadivar M. Optimization of gelatin extraction from chicken deboner residue using RSM method. J. Food Sci. Technol. 2011;50:374–380. doi: 10.1007/s13197-011-0355-7. PubMed DOI PMC
Rammaya K., Ying V.Q., Babji A.S. Physicochemical analysis of gelatin extracted from mechanically deboned chicken meat (mdcm) residue. Int. J. Food Saf. Nutr. Publ. Health. 2012;5:147–167. doi: 10.47556/J.IJFNPH.5.1-2-3.2012.9. DOI
Erge A., Zorba Ö. Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment. LWT-Food Sci. Technol. 2018;97:205–212. doi: 10.1016/j.lwt.2018.06.057. DOI
Al-Kahtani H.A., Jaswir I., Ismail E.A., Ahmed M.A., Monsur Hammed A., Olorunnisola S., Octavianti F. Structural characteristics of camel-bone gelatin by demineralization and extraction. Int. J. Food Prop. 2016;20:2559–2568. doi: 10.1080/10942912.2016.1244543. DOI
Shyni K., Hema G.S., Ninan G., Mathew S., Joshy C.G., Lakshmanan P.T. Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita) Food Hydrocoll. 2014;39:68–76. doi: 10.1016/j.foodhyd.2013.12.008. DOI
Roy B.C., Das C., Hong H., Betti M., Bruce H.L. Extraction and characterization of gelatin from bovine heart. Food Biosci. 2017;20:116–124. doi: 10.1016/j.fbio.2017.09.004. DOI
European Pharmacopoeia 10.0 European Directorate for the Quality of Medicines & Health Care, Strasbourgh, France. 2019. [(accessed on 18 December 2022)]. Available online: https://www.scribd.com/document/508063535/European-Pharmacopoeia-10-0#.
Food Chemical Codex 12. [(accessed on 24 June 2022)]. Available online: https://www.foodchemicalscodex.org/
Nollet L.M.L., Toldrá F. Handbook of Food Analysis. 3rd ed. CRC Press; Boca Raton, FL, USA: 2015. pp. 357–754. DOI
ISO; [(accessed on 16 July 2022)]. Meat and Meat Products—Determination of Hydroxyproline Content. Available online: https://cdn.standards.iteh.ai/samples/8848/908d030b1d6a4807bc2ac15fee8d51f9/SIST-ISO-3496-1995.pdf.
Vázquez-Ortiz F.A., González-Méndez N.F. Determination of collagen as a quality index in Bologna from Northwestern Mexico. J. Food Compos. Anal. 1996;9:269–276. doi: 10.1006/jfca.1996.0032. DOI
Antony J. Design of Experiments for Engineers and Scientists. 2nd ed. Elsevier; London, UK: 2014. pp. 33–85. DOI
Zhang J.Z., Chen J.C., Kirby E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 2007;184:233–239. doi: 10.1016/j.jmatprotec.2006.11.029. DOI
Standard Testing Methods for Edible Gelatin Official Procedure of the Gelatin Manufacturers Institute of America, Inc. [(accessed on 21 June 2022)]. Available online: http://www.gelatin-gmia.com/images/GMIA_Official_Methods_of_Gelatin_Revised_2013.pdf.
Nasrin T.A.A., Noomhorm A., Anal A.K. Physico-chemical characterization of culled plantain pulp starch, peel starch and flour. Int. J. Food Prop. 2015;18:165–177. doi: 10.1080/10942912.2013.828747. DOI
Li F., Jia D., Yao K. Amino acid composition and functional properties of collagen polypeptide from yak (Bos grunniens) bone. LWT-Food Sci. Technol. 2009;42:945–949. doi: 10.1016/j.lwt.2008.12.005. DOI
Sathe S.K., Deshpande S.S., Salunkhe D.K. Functional properties of lupin seed (Supinus mutabilis) proteins and protein concentrates. J. Food Sci. 1982;47:491–497. doi: 10.1111/j.1365-2621.1982.tb10110.x. DOI
Neto V.Q., Narain N., Silva J.B., Bora P.S. Functional properties of raw and heat processed cashew nut (Anarcardium occidentale L.) kernel protein isolates. Die Nahrung. 2001;45:258–262. doi: 10.1002/1521-3803(20010801)45:4<258::AID-FOOD258>3.0.CO;2-3. PubMed DOI
Moosavi-Nasab M., Yazdani-Dehnavi M., Mirzapour-Kouhdasht A. The effects of enzymatically aided acid-swelling process on gelatin extracted from fish by- products. Food Sci. Nutr. 2020;8:5017–5025. doi: 10.1002/fsn3.1799. PubMed DOI PMC