Characterization of Poultry Gelatins Prepared by a Biotechnological Method for Targeted Changes at the Molecular Level

. 2024 Jan 11 ; 25 (2) : . [epub] 20240111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38255989

Grantová podpora
IGA/FT/2023/008 Internal Grant Agency of the Faculty of Technology, Tomas Bata University in Zlin
RP/CPS/2022/002 Ministry of Education, Youth and Sports of the Czech Republic - programme DKRVO

Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, β-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals.

Zobrazit více v PubMed

Díaz-Calderón P., Flores E., González-Muñoz A., Pepczynska M., Quero F., Enrione J. Influence of extraction variables on the structure and physical properties of salmon gelatin. Food Hydrocoll. 2017;71:118–128. doi: 10.1016/j.foodhyd.2017.05.004. DOI

Cho S.H., Jahncke M.L., Chin K.B., Eun J.B. The effect of processing conditions on the properties of gelatin from skate (Raja kenojei) skins. Food Hydrocoll. 2006;20:810–816. doi: 10.1016/j.foodhyd.2005.08.002. DOI

Sinthusamran S., Benjakul S., Kishimura H. Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem. 2014;152:276–284. doi: 10.1016/j.foodchem.2013.11.109. PubMed DOI

Lv L.-C., Huang Q.Y., Ding W., Xiao X.H., Zhang H.Y., Xiong L.X. Fish gelatin: The novel potential applications. J. Funct. Foods. 2019;63:103581. doi: 10.1016/j.jff.2019.103581. DOI

Saenmuang S., Phothiset S., Chumnanka C.H. Extraction and characterization of gelatin from black-bone chicken by-products. Food Sci. Biotechnol. 2020;29:469–478. doi: 10.1007/s10068-019-00696-4. PubMed DOI PMC

Hafidz R.M.R.N., Yaakob C.M., Amin I., Noorfaizan A. Chemical and functional properties of bovine and porcine skin gelatin. Int. Food Res. J. 2011;18:787–791.

Saidi S.G., Rahman M.S., Guizani N. Fourier transform infrared (FTIR) spectroscopic study of extracted gelatin from shaari (Lithrinus microdon) skin: Effects of extraction conditions. Int. Food Res. J. 2012;19:1167–1173.

Silva R.S.G., Bandeira S.F., Pinto L.A.A. Characteristics and chemical composition of skins gelatin from cobia (Rachycentron canadum) LWT Food Sci. Technol. 2014;57:580–585. doi: 10.1016/j.lwt.2014.02.026. DOI

Zhuang Y.L., Sun L.P., Zhao X., Hou H., Li B.F. Investigation of gelatin polypeptides of jellyfish (Rhopilema esculentum) for their antioxidant activity in vitro. Food Technol. Biotechnol. 2010;48:222–228.

Ho T.C., Lim J.S., Kim S.J., Kim S.Y., Chun B.S. In vitro biodegradation, drug absorption, and physical properties of gelatin-fucoidan microspheres made of subcritical-water-modified fish gelatin. Mar. Drugs. 2023;21:287. doi: 10.3390/md21050287. PubMed DOI PMC

Yang J.I., Ho H.Y., Chu Y.J., Chow C.J. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem. 2008;110:128–136. doi: 10.1016/j.foodchem.2008.01.072. PubMed DOI

Tongnuanchan P., Benjakul S., Prodpran T. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Eng. 2013;117:350–360. doi: 10.1016/j.jfoodeng.2013.03.005. DOI

Tongnuanchan P., Benjakul S., Prodpran T. Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem. 2012;134:1571–1579. doi: 10.1016/j.foodchem.2012.03.094. PubMed DOI

Nurilmala M., Hizbullah H.H., Karnia E., Kusumaningtyas E., Ochiai Y. Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Mar. Drugs. 2020;18:98. doi: 10.3390/md18020098. PubMed DOI PMC

Ngo D.H., Qian Z.J., Ryu B.M., Park J.W., Kim S.K. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods. 2010;2:107–117. doi: 10.1016/j.jff.2010.02.001. DOI

Herawati E., Akhsanitaqwim Y., Agnesia P., Listyawati S., Pangastuti A., Ratriyanto A. In vitro antioxidant and antiaging activities of collagen and its hydrolysate from mackerel scad skin (Decapterus macarellus) Mar. Drugs. 2022;20:516. doi: 10.3390/md20080516. PubMed DOI PMC

Wu J., Chen S., Ge S., Miao J., Li J., Zhang Q. Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll. 2013;32:42–51. doi: 10.1016/j.foodhyd.2012.11.029. DOI

Gál R., Čmiková N., Prokopová A., Kačániová M. Antilisterial and antimicrobial effect of Salvia officinalis essential oil in beef sous-vide meat during storage. Foods. 2023;12:2201. doi: 10.3390/foods12112201. PubMed DOI PMC

Lorenzo J.M., Munekata P.E., Dominguez R., Pateiro M., Saraiva J.A., Franco D. Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. In: Barba F.J., Sant’Ana A.D.S., Orlien V., Koubaa M., editors. Innovative Technologies for Food Preservation. 1st ed. Elsevier Inc.; London, UK: 2018. pp. 53–107. DOI

Jensen G.B., Hansen B.M., Eilenberg J., Mahillon J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 2003;5:631–640. doi: 10.1046/j.1462-2920.2003.00461.x. PubMed DOI

Clerck E.D., Vanhoutte T., Hebb T., Geerinck J., Devos J., Vos P.D. Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl. Environ. Microbiol. 2004;70:3664–3672. doi: 10.1128/AEM.70.6.3664-3672.2004. PubMed DOI PMC

Coburn B., Grassl G.A., Finlay B.B. Salmonella, the host and disease: A brief review. Immunol. Cell Biol. 2007;85:112–118. doi: 10.1038/sj.icb.7100007. PubMed DOI

Gomes T.A.T., Elias W.P., Scaletsky I.C.A., Guth B.E.C., Rodrigues J.F., Piazza R.M.F., Ferreira L.C.S., Martinez M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016;47:3–30. doi: 10.1016/j.bjm.2016.10.015. PubMed DOI PMC

Gasanov U., Hughes D., Hansbro P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: A review. FEMS Microbiol. Rev. 2005;29:851–875. doi: 10.1016/j.femsre.2004.12.002. PubMed DOI

Rasko D.A., Altherr M.R., Han C.S., Ravel J. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 2005;29:303–329. doi: 10.1016/j.femsre.2004.12.005. PubMed DOI

Deurenberg R.H., Stobberingh E.E. The evolution of Staphylococcus aureus. Infect. Genet. Evol. 2008;8:747–763. doi: 10.1016/j.meegid.2008.07.007. PubMed DOI

Rather J.A., Akhter N., Ashraf Q.S., Mir S.A., Makroo H.A., Majid D., Barba F.J., Khaneghah A.M., Dar D.N. A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag. Shelf Life. 2022;34:100945. doi: 10.1016/j.fpsl.2022.100945. DOI

Rasli H.I., Sarbon N.M. Effects of different drying methods on the rheological, functional and structural properties of chicken skin gelatin compared to bovine gelatin. Int. Food Res. J. 2015;22:584–592.

Fatima S., Mir M.I., Khan M.R., Sayyed R.Z., Mehnaz S., Abbas S., Sadiq M.B., Masih R. The optimization of gelatin extraction from chicken feet and the development of gelatin based active packaging for the shelf-life extension of fresh grapes. Sustainability. 2022;14:7881. doi: 10.3390/su14137881. DOI

Wang H. A review of the effects of collagen treatment in clinical studies. Polymers. 2021;13:3868. doi: 10.3390/polym13223868. PubMed DOI PMC

Cao C., Xiao Z., Tong H., Liu Y., Wu Y., Ge C. Oral intake of chicken bone collagen peptides anti-skin aging in mice by regulating collagen degradation and synthesis, inhibiting inflammation and activating lysosomes. Nutrients. 2022;14:1622. doi: 10.3390/nu14081622. PubMed DOI PMC

Dhakal D., Koomsap P., Lamichhane A., Sadiq M.B., Anal A.K. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. 2018;23:23–30. doi: 10.1016/j.fbio.2018.03.003. DOI

Mokrejš P., Mrázek P., Gál R., Pavlačková J. Biotechnological preparation of gelatines from chicken feet. Polymers. 2019;11:1060. doi: 10.3390/polym11061060. PubMed DOI PMC

Prokopová A., Mokrejš P., Pavlačková J., Gál R. Preparation of gelatin from broiler chicken stomach collagen. Foods. 2023;12:127. doi: 10.3390/foods12010127. PubMed DOI PMC

Razavizadeh R.S., Farmani J., Motamedzadegan A. Enzyme-assisted extraction of chicken skin protein hydrolysates and fat: Degree of hydrolysis affects the physicochemical and functional properties. J. Am. Oil Chem. Soc. 2022;99:621–632. doi: 10.1002/aocs.12591. DOI

Dong Z.Y., Li M.Y., Tian G., Zhang T.H., Ren H., Quek S.Y. Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method. Food Chem. 2019;299:125103. doi: 10.1016/j.foodchem.2019.125103. PubMed DOI

Dong X.B., Li X., Zhang C.H., Wang J.Z., Tang C.H., Sun H.M., Jia W., Li Y., Chen L.L. Development of a novel method for hot-pressure extraction of protein from chicken bone and the effect of enzymatic hydrolysis on the extracts. Food Chem. 2014;157:339–346. doi: 10.1016/j.foodchem.2014.02.043. PubMed DOI

Huang J., Lu F., Wu Y., Wang D., Xu W., Zou Y., Sun W. Enzymatic extraction and functional properties of phosphatidylcholine from chicken liver. Poult. Sci. 2022;101:101689. doi: 10.1016/j.psj.2021.101689. PubMed DOI PMC

Mokrejš P., Gál R., Pavlačková J. Enzyme conditioning of chicken collagen and taguchi design of experiments enhancing the yield and quality of prepared gelatins. Int. J. Mol. Sci. 2023;24:3654. doi: 10.3390/ijms24043654. PubMed DOI PMC

Mokrejš P., Gál R., Pavlačková J., Janáčová D. Valorization of a by-product from the production of mechanically deboned chicken meat for preparation of gelatins. Molecules. 2021;26:349. doi: 10.3390/molecules26020349. PubMed DOI PMC

Prokopová A., Pavlačková J., Mokrejš P., Gál R. Collagen Hydrolysate prepared from chicken by-product as a functional polymer in cosmetic formulation. Molecules. 2021;26:2021. doi: 10.3390/molecules26072021. PubMed DOI PMC

Jusoh N.A.M., Isa M.I.N., Sarbon N.M. Physical, mechanical and antioxidant properties of chicken skin gelatin films incorporated with virgin coconut oil. Biocatal. Agric. Biotechnol. 2022;45:102525. doi: 10.1016/j.bcab.2022.102525. DOI

Lee S.J., Kim Y.S., Hwang J.W., Kim E.K., Moon S.H., Jeon B.T., Jeon Y.J., Kim J.M., Park P.J. Purification and characterization of a novel antioxidative peptide from duck skin by-products that protects liver against oxidative damage. Food Res. Int. 2012;49:285–295. doi: 10.1016/j.foodres.2012.08.017. DOI

Sarbon N.M., Badii F., Howell N.K. Purification and characterization of antioxidative peptides derived from chicken skin gelatin hydrolysate. Food Hydrocoll. 2018;85:311–320. doi: 10.1016/j.foodhyd.2018.06.048. DOI

Razali A.N., Amin A.M., Sarbon N.M. Antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight. Int. Food Res. J. 2015;22:651–660.

Baliyan S., Mukherjee R., Priyadarshini A., Vibhuti A., Gupta A., Pandey R.P., Chang C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27:1326. doi: 10.3390/molecules27041326. PubMed DOI PMC

Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC

Osawa T., Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann. N. Y. Acad. Sci. 2005;1043:440–451. doi: 10.1196/annals.1333.050. PubMed DOI

Patel R.M., Patel N.J. In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J. Adv. Pharm. Educ. Res. 2011;1:52–68.

Rogošić M., Mencer H.J., Gomzi Z. Polydispersity index and molecular weight distributions of polymers. Eur. Polym. J. 1996;32:1337–1344. doi: 10.1016/S0014-3057(96)00091-2. DOI

Yu H., Huang N., Wang C., Tang Z. Modeling of poly(L-lactide) thermal degradation: Theoretical prediction of molecular weight and polydispersity index. J. Appl. Polym. Sci. 2003;88:2557–2562. doi: 10.1002/app.12093. DOI

Abedinia A., Nafchi A.M., Sharifi M., Ghalambor P., Oladzadabbasabadi N., Ariffin F., Huda N. Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020;104:14–26. doi: 10.1016/j.tifs.2020.08.001. DOI

Rigueto C.V.T., Rosseto M., Alessandretti I., Oliveira R.D., Wohlmuth D.A.R., Menezes J.F., Loss R.A., Dettmer A., Pizzutti I.R. Gelatin films from wastes: A review of production, characterization, and application trends in food preservation and agriculture. Food Res. Int. 2022;162:112114. doi: 10.1016/j.foodres.2022.112114. PubMed DOI

Widyasari R., Rawdkuen S. Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food Appl. Biosci. J. 2014;2:85–97. doi: 10.14456/fabj.2014.7. DOI

Jongjareonrak A., Benjakul S., Visessanguan W., Tanaka M. Skin gelatin from bigeye snapper and brownstripe red snapper: Chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocoll. 2006;20:1216–1222. doi: 10.1016/j.foodhyd.2006.01.006. DOI

Enrione J., Char C., Pepczynska M., Padilla C., González-Muñoz A., Olguín Y., Quinzio C., Iturriaga L., Díaz-Calderón P. Rheological and structural study of salmon gelatin with controlled molecular weight. Polymers. 2020;12:1587. doi: 10.3390/polym12071587. PubMed DOI PMC

Mohtar N.F., Perera C., Quek S.Y. Optimisation of gelatine extraction from hoki (Macruronus novaezelandiae) skins and measurement of gel strength and SDS–PAGE. Food Chem. 2010;122:307–313. doi: 10.1016/j.foodchem.2010.02.027. DOI

Chakka A.K., Ali A.M.M., Sakhare P.Z., Bhaskar N. Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste Biomass Valor. 2017;8:2583–2593. doi: 10.1007/s12649-016-9756-1. DOI

Almeida P.F., Lannes S.C.S., Calarge F.A., Farias T.M.B., Santana J.C.C. FTIR characterization of gelatin from chicken feet. J. Chem. Chem. Eng. 2012;6:1029–1032.

Muyonga J.H., Cole C.G.B., Duodu K.G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus) Food Chem. 2004;86:325–332. doi: 10.1016/j.foodchem.2003.09.038. DOI

Cebi N., Dogan C.E., Mese A.E., Ozdemir D., Arıcı M., Sagdic O. A rapid ATR-FTIR spectroscopic method for classification of gelatin gummy candies in relation to the gelatin source. Food Chem. 2019;277:373–381. doi: 10.1016/j.foodchem.2018.10.125. PubMed DOI

Santana J.C.C., Gardim R.B., Almeida P.F., Borini G.B., Quispe A.P.B., Llanos S.A.V., Heredia J.A., Zamuner S., Gamarra F.M.C., Farias T.M.B., et al. Valorization of chicken feet by-product of the poultry industry: High qualities of gelatin and biofilm from extraction of collagen. Polymers. 2020;12:529. doi: 10.3390/polym12030529. PubMed DOI PMC

Sinel C., Augagneur Y., Sassi M., Bronsard J., Cacaci M., Guérin F., Sanguinetti M., Meignen P., Cattoir V., Felden B. Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Sci. Rep. 2017;7:11067. doi: 10.1038/s41598-017-11265-2. PubMed DOI PMC

Pidot S.J., Gao W., Buultjens A.H., Monk I.R., Guerillot R., Carter G.P., Lee J.Y.H., Lam M.M.C., Grayson M.L., Ballard S.A., et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci. Transl. Med. 2018;10:452. doi: 10.1126/scitranslmed.aar6115. PubMed DOI

Siepert B., Reinhardt N., Kreuzer S., Bondzio A., Twardziok S., Brockmann G., Nöckler K., Szabó I., Janczyk P., Pieper R., et al. Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Vet. Immunol. Immunopathol. 2014;157:65–77. doi: 10.1016/j.vetimm.2013.10.013. PubMed DOI

Food Chemical Codex 12. [(accessed on 4 January 2023)]. Available online: https://www.foodchemicalscodex.org/

European Pharmacopoeia 10.0. European Directorate for the Quality of Medicines & Health Care, Strasbourgh, France. 2019. [(accessed on 4 January 2023)]. Available online: https://www.scribd.com/document/508063535/European-Pharmacopoeia-10-0#.

Marois-Fiset J.T., Carabin A., Lavoie A., Dorea C.C. Effects of temperature and pH on reduction of bacteria in a point-of-use drinking water treatment product for emergency relief. Appl. Environ. Microbiol. 2013;79:2107–2109. doi: 10.1128/AEM.03696-12. PubMed DOI PMC

Struthers J.K. Clinical Microbiology. 2nd ed. CRC Press; Boca Raton, FL, USA: 2017. p. 282.

Verma T., Chaves B.D., Howell T., Jr., Subbiah J. Thermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 on dried basil leaves. Food Microbiol. 2021;96:103710. doi: 10.1016/j.fm.2020.103710. PubMed DOI

Zhang J.Z., Chen J.C., Kirby E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 2007;184:233–239. doi: 10.1016/j.jmatprotec.2006.11.029. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...