Characterization of Fibers Prepared by Centrifugal Spinning from Biotechnologically Derived Chicken Gelatin

. 2024 Aug 22 ; 13 (16) : . [epub] 20240822

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39200557

Grantová podpora
IGA/FT/2023/008 Internal Grant Agency of the Faculty of Technology of Tomas Bata University in Zlín
RVO/CEBIA/2019/003 Faculty of Applied Informatics of Tomas Bata University in Zlín

The application of biopolymer-based materials is increasing due to better sustainability and environmental protection properties. Gelatin fibers have a specific surface and high porosity, which is why their use in medicine and the food industry is being researched. This article explores the potential of centrifugal spinning to produce gelatin fibers. Gelatin for fiber preparation was obtained from a non-traditional source of collagen (chicken by-products) using a unique enzymatic process. The fiber quality was compared with those prepared from gelatins produced from traditional collagen tissues (porcine, bovine). The results showed that fibers cross-linked with glutaraldehyde vapor preserved their structure even in contact with water. Using a cross-linker controlled swelling ability and solubility while maintaining the fiber structure. On the contrary, uncross-linked gelatin fibers were water soluble due to a high surface-to-volume ratio, facilitating water penetration and dissolution. Scanning electron microscopy (SEM) provided a clearer picture of the morphology of gelatin fibers obtained by centrifugal spinning. Differences in the amount of bonding depending on the raw material used and the presence of a cross-linker were analyzed using Fourier transform infrared spectroscopy (FTIR). The overall results showed that chicken gelatin is a suitable alternative to gelatins from traditional sources and can be used for preparing food and pharmaceutical packaging and coatings, fibers, or bioprinting of 3D matrices.

Zobrazit více v PubMed

Bhattarai N., Li Z., Edmondson D., Zhang M. Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv. Mater. 2006;18:1463–1467. doi: 10.1002/adma.200502537. DOI

Moon S., Farris R.J. Electrospinning of heated gelatin-sodium alginate-water solutions. Polym. Eng. Sci. 2009;49:1616–1620. doi: 10.1002/pen.21355. DOI

Songchotikunpan P., Tattiyakul J., Supaphol P. Extraction and electrospinning of gelatin from fish skin. Int. J. Biol. Macromol. 2008;42:247–255. doi: 10.1016/j.ijbiomac.2007.11.005. PubMed DOI

Zhang Y.Z., Venugopal J., Huang Z.-M., Lim C.T., Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006;47:2911–2917. doi: 10.1016/j.polymer.2006.02.046. DOI

Gómez-Guillén M., Giménez B., López-Caballero M., Montero M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI

Mokrejš P., Gál R., Mrázek P. Biotechnology-Based Production of Food Gelatine from Poultry By-Products, Prague, Czech. CZ 307665. Republic. Patent. 2019 February 6;

Gál R., Mokrejš P., Mrázek P., Pavlačková J., Janáčová D., Orsavová J. Chicken heads as a promising by-product for preparation of food gelatins. Molecules. 2020;25:494. doi: 10.3390/molecules25030494. PubMed DOI PMC

Mrázek P., Gál R., Mokrejš P., Krejčí O., Orsavová J. Thermal stability of prepared chicken feet gelatine gel in comparison with commercial gelatines. Potravin. Slovak J. Food Sci. 2020;14:535–543. doi: 10.5219/1297. DOI

Prokopová A., Mokrejš P., Gál R., Pavlačková J., Hurajová A. Characterization of poultry gelatins prepared by a biotechnological method for targeted changes at the molecular level. Int. J. Mol. Sci. 2024;25:916. doi: 10.3390/ijms25020916. PubMed DOI PMC

Mokrejš P., Mrázek P., Gál R., Pavlačková J. Biotechnological preparation of gelatines from chicken feet. Polymers. 2019;11:1060. doi: 10.3390/polym11061060. PubMed DOI PMC

Jung H., editor. Innovations in Food Packaging. Elsevier; Amsterdam, The Netherlands: 2005. Edible films and coatings: A review; pp. 213–255.

Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on a Request from the Commission Related to Flavouring Group Evaluation 10: Aliphatic Primary and Secondary Saturated and Unsaturated Alcohols, Aldehydes, Acetals, Carboxylic Acids and Esters Containing an Additional Oxygenated Functional Group and Lactones from Chemical Groups 9, 13 and 30, Commission Regulation (EC) No. 1565/2000 of 18 July 2000. [(accessed on 13 March 2022)]. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2005.246. DOI

Code of Federal Regulations. [(accessed on 13 March 2022)]; Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172#p-172.230(a)(2)

Gungor M., Sagirli M.N., Calisir M.D., Selcuk S., Kilic A. Developing centrifugal spun thermally cross-linked gelatin based fibrous biomats for antibacterial wound dressing applications. Polym. Eng. Sci. 2021;61:2311–2322. doi: 10.1002/pen.25759. DOI

Babczyk P., Conzendorf C., Klose J., Schulze M., Harre K., Tobiasch E. Stem cells on biomaterials for synthetic grafts to promote vascular healing. J. Clin. Med. 2014;3:39–87. doi: 10.3390/jcm3010039. PubMed DOI PMC

Suput D.Z., Lazic V.L., Popovic S.Z., Hromis N.M. Edible films and coatings: Sources, properties and application. Food Feed Res. 2015;42:11–22. doi: 10.5937/FFR1501011S. DOI

Alvarez M.V., Ponce A.G., Moreira M.d.R. Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT. 2013;50:78–87. doi: 10.1016/j.lwt.2012.06.021. DOI

Luo Y., Wu Y., Wang Y., Yu L. Active and robust composite films based on gelatin and gallic acid integrated with microfibrillated cellulose. Foods. 2021;10:2831. doi: 10.3390/foods10112831. PubMed DOI PMC

Arcan I., Yemenicioğlu A. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res. Int. 2010;44:550–556. doi: 10.1016/j.foodres.2010.11.034. DOI

Ucak I., Khalily R., Carrillo C., Tomasevic I., Barba F.J. Potential of propolis extract as a natural antioxidant and antimicrobial in gelatin films applied to rainbow trout (Oncorhynchus mykiss) fillets. Foods. 2020;9:1584. doi: 10.3390/foods9111584. PubMed DOI PMC

Zhou Q., Zhang Z., Huang Y., Niu L., Miao J., Lai K. Effects of acidulants on the rheological properties of gelatin extracted from the skin of tilapia (Oreochromis mossambicus) Foods. 2022;11:2812. doi: 10.3390/foods11182812. PubMed DOI PMC

Olatunji O., editor. Natural Polymers: Industry Techniques and Applications. Springer; London, UK: 2016. Processing and characterization of natural polymers; pp. 19–61.

Gennadios A., editor. Protein Based Films and Coatings. CRC Press; Boca Raton, FL, USA: 2002. Soft gelatin capsules; pp. 393–443.

Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC

Ramakrishna S. An Introduction to Electrospinning and Nanofibers. World Scientific; Hackensack, NJ, USA: 2008. pp. 22–154.

Drabek J., Zatloukal M. Meltblown technology for production of polymeric microfibers/nanofibers: A review. Phys. Fluids. 2019;31:091301. doi: 10.1063/1.5116336. DOI

Sarkar K., Gomez C., Zambrano S., Ramirez M., de Hoyos E., Vasquez H., Lozano K. Electrospinning to Forcespinning™. Mater. Today. 2010;13:12–14. doi: 10.1016/S1369-7021(10)70199-1. DOI

Weitz R.T., Harnau L., Rauschenbach S., Burghard M., Kern K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett. 2008;8:1187–1191. doi: 10.1021/nl080124q. PubMed DOI

Agubra V.A., Zuniga L., De la Garza D., Gallegos L., Pokhrel M., Alcoutlabi M. Forcespinning: A new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ion. 2016;286:72–82. doi: 10.1016/j.ssi.2015.12.020. DOI

Kavoosi G., Dadfar S.M.M., Purfard A.M. Mechanical, physical, antioxidant, and antimicrobial Properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013;78:E244–E250. doi: 10.1111/1750-3841.12015. PubMed DOI

Mohiti-Asli M., Loboa E.G., editors. Wound Healing Biomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Nanofibrous smart bandages for wound care; pp. 483–499.

Zhang C., Li Y., Wang P., Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 2020;19:479–502. doi: 10.1111/1541-4337.12536. PubMed DOI

Deng L., Kang X., Liu Y., Feng F., Zhang H. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting. Food Hydrocoll. 2018;74:324–332. doi: 10.1016/j.foodhyd.2017.08.023. DOI

Papaioannou T.G., Manolesou D., Dimakakos E., Tsoucalas G., Vavuranakis M., Tousoulis D. 3D bioprinting methods and techniques: Applications on artificial blood vessel fabrication. Acta Cardiol. Sin. 2019;35:284–289. doi: 10.6515/ACS.201905_35(3).20181115A. PubMed DOI PMC

Wang X., Ao Q., Tian X., Fan J., Tong H., Hou W., Bai S. Gelatin-based hydrogels for organ 3D bioprinting. Polymers. 2017;9:401. doi: 10.3390/polym9090401. PubMed DOI PMC

Mondal A., Gebeyehu A., Miranda M., Bahadur D., Patel N., Ramakrishnan S., Rishi A.K., Singh M. Characterization and printability of sodium alginate-gelatin hydrogel for bioprinting NSCLC co-culture. Sci. Rep. 2019;9:19914. doi: 10.1038/s41598-019-55034-9. PubMed DOI PMC

Švachová V., Khunová V., Pavliňák D., Fohlerová Z., Vojtová L. The Effect of halloysite on structure and properties of polycaprolactone/gelatin nanofibers. Polym. Eng. Sci. 2017;57:506–512. doi: 10.1002/pen.24512. DOI

Tejiram S., Kavalukas S.L., Shupp J.W., Barbul A. Wound Healing Biomaterials. Elsevier; Amsterdam, The Netherlands: 2016. pp. 3–39.

Hlavatá J. Master’s Thesis. Technical University in Liberec; Liberec, Czech Republic: 2015. Spinnability of Polymer Solution Mixtures by Centrifugal Spinning. (In Czech)

Du L., Khiari Z., Pietrasik Z., Betti M. Physicochemical and functional properties of gelatins extracted from turkey and chicken heads. Poult. Sci. 2013;92:2463–2474. doi: 10.3382/ps.2013-03161. PubMed DOI

Mugnaini G., Gelli R., Mori L., Bonini M. How to Cross-Link Gelatin: The Effect of Glutaraldehyde and Glyceraldehyde on the Hydrogel Properties. ACS Appl. Polym. Mater. 2023;5:9192–9202. doi: 10.1021/acsapm.3c01676. DOI

Padrão J., Silva J.P., Rodrigues L.R., Dourado F., Lanceros-Méndez S., Sencadas V. Modifying fish gelatin electrospun membranes for biomedical applications: Cross-linking and swelling behavior. Soft Matter. 2014;12:247–252. doi: 10.1080/1539445X.2013.873466. DOI

Mîndru T.B., Ignat L., Mîndru I.B., Pinteala M. Morphological aspects of polymer fiber mats obtained by air flow rotary-jet spinning. Fibers Polym. 2013;14:1526–1534. doi: 10.1007/s12221-013-1526-0. DOI

Chaochai T., Imai Y., Furuike T., Tamura H. Preparation and properties of gelatin fibers fabricated by dry spinning. Fibers. 2016;4:2. doi: 10.3390/fib4010002. DOI

Arican F., Uzuner-Demir A., Polat O., Sancakli A., Ismar E. Fabrication of gelatin nanofiber webs via centrifugal spinning for N95 respiratory filters. Bull. Mater. Sci. 2022;45:93. doi: 10.1007/s12034-022-02668-7. DOI

Peña-Rodriguez C., Martucci J.F., Neira L.M., Arbelaiz A., Eceiza A., A Ruseckaite R. Functional properties and in vitro antioxidant and antibacterial effectiveness of pigskin gelatin films incorporated with hydrolysable chestnut tannin. Food Sci. Technol. Int. 2014;21:221–231. doi: 10.1177/1082013214525429. PubMed DOI

Nor M.H.M., Nazmi N.N.M., Sarbon N.M. Effects of plasticizer concentrations on functional properties of chicken skin gelatin films. Int. Food Res. J. 2017;24:1910–1918.

Sabantina L., Wehlage D., Klöcker M., Mamun A., Grothe T., García-Mateos F.J., Rodríguez-Mirasol J., Cordero T., Finsterbusch K., Ehrmann A. Stabilization of electrospun PAN/gelatin nanofiber mats for carbonization. J. Nanomater. 2018;2018:6131085. doi: 10.1155/2018/6131085. DOI

Kuppan P., Sethuraman S., Krishnan U.M. PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: Optimization, characterization and cell-matrix interactions. J. Biomed. Nanotechnol. 2013;9:1540–1555. doi: 10.1166/jbn.2013.1653. PubMed DOI

Kim S.E., Heo D.N., Lee J.B., Kim J.R., Park S.H., Jeon S.H., Kwon I.K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009;4:044106. doi: 10.1088/1748-6041/4/4/044106. PubMed DOI

Sun C., Yin H., He J., Zou L., Xu Y. Fabrication and characterization of nanofibrous gelatin/chitosan-poly (ethylene oxide) membranes by electrospinning with acetic acid as solvent. J. Polym. Res. 2021;28:482. doi: 10.1007/s10965-021-02845-y. DOI

Riyajan S.-A., Teprak A. A Novel Environmentally Friendly Biopolymer Product from Gelatin and Natural Rubber: Effect of Bagasse Fiber and Urea. J. Polym. Environ. 2018;27:225–233. doi: 10.1007/s10924-018-1336-y. DOI

Wang Q.-Q., Liu Y., Zhang C.-J., Zhu P. Alginate/gelatin blended hydrogel fibers cross-linked by Ca2+ and oxidized starch: Preparation and properties. Mater. Sci. Eng. C. 2019;99:1469–1476. doi: 10.1016/j.msec.2019.02.091. PubMed DOI

Etxabide A., Akbarinejad A., Chan E.W., Guerrero P., de la Caba K., Travas-Sejdic J., Kilmartin P.A. Effect of gelatin concentration, ribose and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers. Eur. Polym. J. 2022;180:111597. doi: 10.1016/j.eurpolymj.2022.111597. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace