Antilisterial and Antimicrobial Effect of Salvia officinalis Essential Oil in Beef Sous-Vide Meat during Storage

. 2023 May 30 ; 12 (11) : . [epub] 20230530

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37297446

Grantová podpora
ref. No. IGA/FT/2022/003. This research was funded by the Internal Grant Agency of the Faculty of Technology, Tomas Bata University in Zlin,
313011V336. This publication was supported by the Operational Program 'Integrated Infrastructure' within the project: Demand-driven research for sustainable and innovative food, Drive4SIFood

If food is contaminated with pathogens such as Listeria monocytogenes, improper cooking during sous-vide preparation can lead to foodborne illnesses. In this study, it was found that L. monocytogenes were inactivated with both heat and the essential oil of Salvia officinalis (sage EO) in beef tenderloin of the musculus psoas major that had undergone sous-vide processing. To determine whether the enhancement of the efficacy of heat treatment is prospective, L. monocytogenes and sage EO were mixed. Groups with L. monocytogenes alone and sage essential oil combined with L. monocytogenes and test groups without EO were established. The samples were vacuum-packed, inoculated with L. monocytogenes, and then cooked sous-vide for the predetermined duration at 50, 55, 60, or 65 °C. In both groups with sous-vide beef tenderloin, the total bacterial count, the coliforms bacterial count, and the amount of L. monocytogenes were assessed on days 0, 3, 6, 9, and 12. Over these days, the amounts of L. monocytogenes, coliform bacteria, and overall bacteria increased. The identification of bacterial strains in various days and categories was performed by MALDI-TOF mass spectrometry. The test group that was exposed to a temperature of 50 °C for 5 min had a higher overall bacterial count for each day that was assessed. Pseudomonas fragi and L. monocytogenes were the most isolated organisms from the test group and the treated group. To ensure the safety for the consumption of sous-vide beef tenderloin, it was found that the addition of natural antimicrobials could produce effective outcomes.

Zobrazit více v PubMed

Zavadlav S., Blažić M., Van de Velde F., Vignatti C., Fenoglio C., Piagentini A.M., Pirovani M.E., Perotti C.M., Bursać Kovačević D., Putnik P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods. 2020;9:1537. doi: 10.3390/foods9111537. PubMed DOI PMC

Ruiz J., Calvarro J., Sánchez del Pulgar J., Roldán M. Science and Technology for New Culinary Techniques. J. Culin. Sci. Technol. 2013;11:66–79. doi: 10.1080/15428052.2013.755422. DOI

Stringer S.C., Metris A. Sous Vide and Cook-Chill Processing for the Food Industry. 2nd ed. Springer; New York, NY, USA: 2018. Spore Forming Pathogens and Sous Vide Food Safety.

Hyytiä-Trees E., Skyttä E., Mokkila M., Kinnunen A., Lindström M., Lähteenmäki L., Ahvenainen R., Korkeala H. Safety Evaluation of Sous Vide-Processed Products with Respect to Nonproteolytic Clostridium botulinum by Use of Challenge Studies and Predictive Microbiological Models. Appl. Environ. Microbiol. 2000;66:223–229. doi: 10.1128/AEM.66.1.223-229.2000. PubMed DOI PMC

Ghorbani A., Esmaeilizadeh M. Pharmacological Properties of Salvia officinalis and Its Components. J. Tradit. Complement. Med. 2017;7:433–440. doi: 10.1016/j.jtcme.2016.12.014. PubMed DOI PMC

Gurtler J.B., Fan X., Jin T., Niemira B.A. Influence of Antimicrobial Agents on the Thermal Sensitivity of Foodborne Pathogens: A Review. J. Food Prot. 2019;82:628–644. doi: 10.4315/0362-028X.JFP-18-441. PubMed DOI

Cui H., Zhang X., Zhou H., Zhao C., Lin L. Antimicrobial Activity and Mechanisms of Salvia sclarea Essential Oil. Bot. Stud. 2015;56:16. doi: 10.1186/s40529-015-0096-4. PubMed DOI PMC

Tuszyński T., Makarewicz M. Effect of Herbal Extracts on the Growth of Selected Yeast (Saccharomyces cerevisiae) Strains. Żywność. 2000;1:37–44.

Korczak J., Flaczyk E., Pazoła Z. Effects of Spices on Stability of Minced Meat Products Kept in Cold Storage. Fleischwirtschaft. 1988;1:64–66.

Madsen H.L., Andersen L., Christiansen L., Brockhoff P., Bertelsen G. Antioxidative Activity of Summer Savory (Satureja hortensis L.) and Rosemary (Rosmarinus officinalis L.) in Minced, Cooked Pork Meat. Z. Lebensm.-Unters. Forsch. 1996;203:333–338. doi: 10.1007/BF01231071. DOI

Kačániová M., Galovičová L., Valková V., Ďuranová H., Borotová P., Štefániková J., Vukovic N.L., Vukic M., Kunová S., Felsöciová S., et al. Chemical Composition and Biological Activity of Salvia officinalis Essential Oil. Acta Hortic. Regiotect. 2021;24:81–88. doi: 10.2478/ahr-2021-0028. DOI

Zhang L., Lin Y.H., Leng X.J., Huang M., Zhou G.H. Effect of Sage (Salvia officinalis) on the Oxidative Stability of Chinese-Style Sausage during Refrigerated Storage. Meat Sci. 2013;95:145–150. doi: 10.1016/j.meatsci.2013.05.005. PubMed DOI

Mizi L., Cofrades S., Bou R., Pintado T., López-Caballero M.E., Zaidi F., Jiménez-Colmenero F. Antimicrobial and Antioxidant Effects of Combined High Pressure Processing and Sage in Beef Burgers during Prolonged Chilled Storage. Innov. Food Sci. Emerg. Technol. 2019;51:32–40. doi: 10.1016/j.ifset.2018.04.010. DOI

Karpińska-Tymoszczyk M. Effects of Sage Extract (Salvia officinalis L.) And A Mixture of Sage Extract And Sodium Isoascorbate On The Quality And Shelf Life Of Vacuum-Packed Turkey Meatballs. J. Muscle Foods. 2007;18:420–434. doi: 10.1111/j.1745-4573.2007.00096.x. DOI

Moura-Alves M., Gouveia A.R., de Almeida J.M.M.M., Monteiro-Silva F., Silva J.A., Saraiva C. Behavior of Listeria Monocytogenes in Beef Sous Vide Cooking with Salvia officinalis L. Essential Oil, during Storage at Different Temperatures. LWT. 2020;132:109896. doi: 10.1016/j.lwt.2020.109896. DOI

Hernández-Macedo M.L., Barancelli G.V., Contreras-Castillo C.J. Microbial Deterioration of Vacuum-Packaged Chilled Beef Cuts and Techniques for Microbiota Detection and Characterization: A Review. Braz. J. Microbiol. 2011;42:1–11. doi: 10.1590/S1517-83822011000100001. PubMed DOI PMC

Kunová S., Sendra E., Haščík P., Vukovic N.L., Vukic M., Kačániová M. Influence of Essential Oils on the Microbiological Quality of Fish Meat during Storage. Animals. 2021;11:3145. doi: 10.3390/ani11113145. PubMed DOI PMC

Davidson P.M., Cekmer H.B., Monu E.A., Techathuvanan C. Handbook of Natural Antimicrobials for Food Safety and Quality. Elsevier; Amsterdam, The Netherlands: 2015. The Use of Natural Antimicrobials in Food; pp. 1–27.

Bongiorno T., Tulli F., Comi G., Sensidoni A., Andyanto D., Iacumin L. Sous Vide Cook-Chill Mussel (Mytilus galloprovincialis): Evaluation of Chemical, Microbiological and Sensory Quality during Chilled Storage (3 °C) LWT. 2018;91:117–124. doi: 10.1016/j.lwt.2017.12.005. DOI

Nyati H. An Evaluation of the Effect of Storage and Processing Temperatures on the Microbiological Status of Sous Vide Extended Shelf-Life Products. Food Control. 2000;11:471–476. doi: 10.1016/S0956-7135(00)00013-X. DOI

Schellekens M. New Research Issues in Sous-Vide Cooking. Trends Food Sci. Technol. 1996;7:256–262. doi: 10.1016/0924-2244(96)10027-3. DOI

Tornberg E. Effects of Heat on Meat Proteins—Implications on Structure and Quality of Meat Products. Meat Sci. 2005;70:493–508. doi: 10.1016/j.meatsci.2004.11.021. PubMed DOI

Eidi M., Eidi A., Bahar M. Effects of Salvia officinalis L. (Sage) Leaves on Memory Retention and Its Interaction with the Cholinergic System in Rats. Nutrition. 2006;22:321–326. doi: 10.1016/j.nut.2005.06.010. PubMed DOI

Ballester-Costa C., Sendra E., Fernández-López J., Pérez-Álvarez J.A., Viuda-Martos M. Chemical Composition and in Vitro Antibacterial Properties of Essential Oils of Four Thymus Species from Organic Growth. Ind. Crops Prod. 2013;50:304–311. doi: 10.1016/j.indcrop.2013.07.052. DOI

Yazgan H. Investigation of Antimicrobial Properties of Sage Essential Oil and Its Nanoemulsion as Antimicrobial Agent. LWT. 2020;130:109669. doi: 10.1016/j.lwt.2020.109669. DOI

Longaray Delamare A.P., Moschen-Pistorello I.T., Artico L., Atti-Serafini L., Echeverrigaray S. Antibacterial Activity of the Essential Oils of Salvia officinalis L. and Salvia triloba L. Cultivated in South Brazil. Food Chem. 2007;100:603–608. doi: 10.1016/j.foodchem.2005.09.078. DOI

Nezhadali A., Nabavi M., Rajabian M., Akbarpour M., Pourali P., Amini F. Chemical Variation of Leaf Essential Oil at Different Stages of Plant Growth and in Vitro Antibacterial Activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef Univ. J. Basic Appl. Sci. 2014;3:87–92. doi: 10.1016/j.bjbas.2014.05.001. DOI

Singh G., Kapoor I.P.S., Singh P. Effect of Volatile Oil And Oleoresin Of Anise On The Shelf Life Of Yogurt*: Anise Oil And Oleoresin: Effect On Yogurt. J. Food Process. Preserv. 2011;35:778–783. doi: 10.1111/j.1745-4549.2011.00528.x. DOI

Selim S. Antimicrobial Activity of Essential Oils against Vancomycin-Resistant Enterococci (VRE) and Escherichia coli O157:H7 in Feta Soft Cheese and Minced Beef Meat. Braz. J. Microbiol. 2011;42:187–196. doi: 10.1590/S1517-83822010005000005. PubMed DOI PMC

Tangwatcharin P., Sorapukdee S., Kongsrirat K. Sous-Vided Restructured Goat Steaks: Process Optimized by Thermal Inactivation of Listeria monocytogenes and Their Quality Characteristics. Food Sci. Anim. Resour. 2019;39:863–876. doi: 10.5851/kosfa.2019.e64. PubMed DOI PMC

Dogruyol H., Mol S., Cosansu S. Increased Thermal Sensitivity of Listeria Monocytogenes in Sous-Vide Salmon by Oregano Essential Oil and Citric Acid. Food Microbiol. 2020;90:103496. doi: 10.1016/j.fm.2020.103496. PubMed DOI

Chan Y.C., Wiedmann M. Physiology and Genetics of Listeria monocytogenes Survival and Growth at Cold Temperatures. Crit. Rev. Food Sci. Nutr. 2008;49:237–253. doi: 10.1080/10408390701856272. PubMed DOI

Lee S.-Y., Kwon K.-H., Chai C., Oh S.-W. Growth Behavior Comparison of Listeria monocytogenes between Type Strains and Beef Isolates in Raw Beef. Food Sci. Biotechnol. 2017;27:599–605. doi: 10.1007/s10068-017-0258-0. PubMed DOI PMC

Farber M., Peterkin P. Listeria, Listeriosis and Food Safety. Marcel Dekker Inc.; New York, NY, USA: 1999. Incidence and Behaviour of Listeria monocytogenes in Meat Products; pp. 505–564.

McCarthy S.A. Pathogenicity of Nonstressed, Heat-Stressed, and Resuscitated Listeria monocytogenes 1A1 Cells. Appl. Environ. Microbiol. 1991;57:2389–2391. doi: 10.1128/aem.57.8.2389-2391.1991. PubMed DOI PMC

Yılmaz İ., Arıcı M., Gümüş T. Changes of Microbiological Quality in Meatballs after Heat Treatment. Eur. Food Res. Technol. 2005;221:281–283. doi: 10.1007/s00217-005-1157-9. DOI

Smith D.M., Alvarez V.B. Stability of Vacuum Cook-in-Bag Turkey Breast Rolls during Refrigerated Storage. J. Food Sci. 1988;53:46–48. doi: 10.1111/j.1365-2621.1988.tb10175.x. DOI

De Filippis F., La Storia A., Villani F., Ercolini D. Strain-Level Diversity Analysis of Pseudomonas Fragi after In Situ Pangenome Reconstruction Shows Distinctive Spoilage-Associated Metabolic Traits Clearly Selected by Different Storage Conditions. Appl. Environ. Microbiol. 2019;85:e02212-18. doi: 10.1128/AEM.02212-18. PubMed DOI PMC

Pennacchia C., Ercolini D., Villani F. Spoilage-Related Microbiota Associated with Chilled Beef Stored in Air or Vacuum Pack. Food Microbiol. 2011;28:84–93. doi: 10.1016/j.fm.2010.08.010. PubMed DOI

Casaburi A., Piombino P., Nychas G.-J., Villani F., Ercolini D. Bacterial Populations and the Volatilome Associated to Meat Spoilage. Food Microbiol. 2015;45:83–102. doi: 10.1016/j.fm.2014.02.002. PubMed DOI

Kiermeier A., Tamplin M., May D., Holds G., Williams M., Dann A. Microbial Growth, Communities and Sensory Characteristics of Vacuum and Modified Atmosphere Packaged Lamb Shoulders. Food Microbiol. 2013;36:305–315. doi: 10.1016/j.fm.2013.06.016. PubMed DOI

Botta C., Ferrocino I., Cavallero M.C., Riva S., Giordano M., Cocolin L. Potentially Active Spoilage Bacteria Community during the Storage of Vacuum Packaged Beefsteaks Treated with Aqueous Ozone and Electrolyzed Water. Int. J. Food Microbiol. 2018;266:337–345. doi: 10.1016/j.ijfoodmicro.2017.10.012. PubMed DOI

Jääskeläinen E., Johansson P., Kostiainen O., Nieminen T., Schmidt G., Somervuo P., Mohsina M., Vanninen P., Auvinen P., Björkroth J. Significance of Heme-Based Respiration in Meat Spoilage Caused by Leuconostoc Gasicomitatum. Appl. Environ. Microbiol. 2013;79:1078–1085. doi: 10.1128/AEM.02943-12. PubMed DOI PMC

Sokołowicz Z., Augustyńska-Prejsnar A., Krawczyk J., Kačániová M., Kluz M., Hanus P., Topczewska J. Technological and Sensory Quality and Microbiological Safety of RIR Chicken Breast Meat Marinated with Fermented Milk Products. Animals. 2021;11:3282. doi: 10.3390/ani11113282. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...