Sage Essential Oil as an Antimicrobial Agent against Salmonella enterica during Beef Sous Vide Storage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV SK-BY-RD-19-0014
APVV Bilateral project Slovakia-Belarus
IGA/FT/2023/007
Tomas Bata University in Zlín
PubMed
38002229
PubMed Central
PMC10670455
DOI
10.3390/foods12224172
PII: foods12224172
Knihovny.cz E-zdroje
- Klíčová slova
- active substance, beef tenderloin, foodborne pathogen, novel application, safety, sage essential oil, stabilization, under vacuum,
- Publikační typ
- časopisecké články MeSH
Sous-vide is a process comprising vacuum-sealing food, heating it to the desired temperature, and circulating it in a water bath in a sous vide machine. This cooking technique is increasingly common in homes and catering establishments due to its simplicity and affordability. However, manufacturers and chef's recommendations for low-temperature and long-term sous-vide cooking in media raise food safety concerns, particularly when preparing beef tenderloin. In this study, Salmonella enterica was found to be inactivated by heat and sage essential oil (EO) in beef samples from musculus psoas major that had been sous vide processed. To determine whether heat treatment was likely to increase the sous vide efficiency, S. enterica and sage EO were mixed. After being vacuum-packed and injected with S. enterica, the samples were cooked at 50-65 °C through the sous vide technique for the prescribed time. On days 1, 3, and 6, the amounts of S. enterica, total bacteria, and coliform bacteria were measured in the control and treated groups of beef processed sous vide. Mass spectrometry was used to identify bacterial isolates on different days. On each day that was measured, a higher number of all the microbiota was found in the samples exposed to 50 °C for 5 min. The most frequently isolated microorganisms from both groups of samples were Pseudomonas fragi (17%), Pseudomonas cedrina (8%), and Proteus vulgaris (8%); in the treated group, also S. enterica (21%), Pseudomonas fragi (13%), and Pseudomonas veronii (6%). After the heat treatment of samples at 65 °C for 20 min, the total count of bacteria and coliform bacteria was zero. It has been shown that adding sage essential oil (EO) in combination with sous vide processing technique leads to the stabilization and safety of beef tenderloin.
Zobrazit více v PubMed
Baldwin D.E. Sous Vide Cooking: A Review. Int. J. Gastron. Food Sci. 2012;1:15–30. doi: 10.1016/j.ijgfs.2011.11.002. DOI
Hunt H.B., Watson S.C., Chaves B.D., Sullivan G.A. Inactivation of Salmonella in Nonintact Beef during Low-Temperature Sous Vide Cooking. J. Food Prot. 2023;86:100010. doi: 10.1016/j.jfp.2022.11.003. PubMed DOI
Rhoades J.R., Duffy G., Koutsoumanis K. Prevalence and Concentration of Verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the Beef Production Chain: A Review. Food Microbiol. 2009;26:357–376. doi: 10.1016/j.fm.2008.10.012. PubMed DOI
Kargiotou C., Katsanidis E., Rhoades J., Kontominas M., Koutsoumanis K. Efficacies of Soy Sauce and Wine Base Marinades for Controlling Spoilage of Raw Beef. Food Microbiol. 2011;28:158–163. doi: 10.1016/j.fm.2010.09.013. PubMed DOI
Pal A., Labuza T.P., Diez-Gonzalez F. Comparison of Primary Predictive Models to Study the Growth of Listeria monocytogenes at Low Temperatures in Liquid Cultures and Selection of Fastest Growing Ribotypes in Meat and Turkey Product Slurries. Food Microbiol. 2008;25:460–470. doi: 10.1016/j.fm.2008.01.009. PubMed DOI
Berends B.R., Van Knapen F., Mossel D.A.A., Burt S.A., Snijders J.M.A. Impact on Human Health of Salmonella spp. on Pork in The Netherlands and the Anticipated Effects of Some Currently Proposed Control Strategies. Int. J. Food Microbiol. 1998;44:219–229. doi: 10.1016/S0168-1605(98)00121-4. PubMed DOI
Wong T.L., Nicol C., Cook R., Macdiarmid S. Salmonella in Uncooked Retail Meats in New Zealand. J. Food Prot. 2007;70:1360–1365. doi: 10.4315/0362-028X-70.6.1360. PubMed DOI
Botteldoorn N., Heyndrickx M., Rijpens N., Grijspeerdt K., Herman L. Salmonella on Pig Carcasses: Positive Pigs and Cross Contamination in the Slaughterhouse. J. Appl. Microbiol. 2003;95:891–903. doi: 10.1046/j.1365-2672.2003.02042.x. PubMed DOI
Meyer C., Thiel S., Ullrich And U., Stolle A. Salmonella in Raw Meat and By-Products from Pork and Beef. J. Food Prot. 2010;73:1780–1784. doi: 10.4315/0362-028X-73.10.1780. PubMed DOI
Lebelo K., Malebo N., Mochane M.J., Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. Int. J. Environ. Res. Public Health. 2021;18:5795. doi: 10.3390/ijerph18115795. PubMed DOI PMC
Davidson P.M., Taylor T.M., Schmidt S.E. Chemical Preservatives and Natural Antimicrobial Compounds. In: Doyle M.P., Buchanan R.L., editors. Food Microbiology. ASM Press; Washington, DC, USA: 2014. pp. 765–801.
Himanshu, Lanjouw P., Stern N. How Lives Change. Oxford University Press; Oxford, UK: 2018.
Skandamis P., Tsigarida E., Nychas G.-J.E. The Effect of Oregano Essential Oil on Survival/Death of Salmonella typhimurium in Meat Stored at 5 °C under Aerobic, VP/MAP Conditions. Food Microbiol. 2002;19:97–103. doi: 10.1006/fmic.2001.0447. DOI
Kačániová M., Galovičová L., Valková V., Ďuranová H., Borotová P., Štefániková J., Vukovic N.L., Vukic M., Kunová S., Felsöciová S., et al. Chemical Composition and Biological Activity of Salvia officinalis Essential Oil. Acta Hortic. Regiotect. 2021;24:81–88. doi: 10.2478/ahr-2021-0028. DOI
Gál R., Čmiková N., Prokopová A., Kačániová M. Antilisterial and Antimicrobial Effect of Salvia officinalis Essential Oil in Beef Sous-Vide Meat during Storage. Foods. 2023;12:2201. doi: 10.3390/foods12112201. PubMed DOI PMC
Salehi B., Zucca P., Sharifi-Rad M., Pezzani R., Rajabi S., Setzer W.N., Varoni E.M., Iriti M., Kobarfard F., Sharifi-Rad J. Phytotherapeutics in Cancer Invasion and Metastasis: Phytotherapeutics in Cancer Invasion and Metastasis. Phytother. Res. 2018;32:1425–1449. doi: 10.1002/ptr.6087. PubMed DOI
Chaachouay N. Ethnobotanical and Ethnopharmacological Study of Medicinal and Aromatic Plants Used in the Treatment of Neurological Disorders in the Moroccan Rif. J. Integr. Med. 2020;8:e02191. doi: 10.30564/jim.v8i1.571. PubMed DOI PMC
Snow Setzer M., Sharifi-Rad J., Setzer W. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals. Antibiotics. 2016;5:30. doi: 10.3390/antibiotics5030030. PubMed DOI PMC
Bagheri G., Mirzaei M., Mehrabi R., Sharifi-Rad J. Cytotoxic and Antioxidant Activities of Alstonia scholaris, Alstonia venenata and Moringa oleifera Plants from India. Jundishapur J. Nat. Pharm. Prod. 2016;11:e31129. doi: 10.17795/jjnpp-31129. DOI
Nikoli B., Miti-ulafi D., Vukovi-Gai B., Kneevi-Vukevi J. Molecular Mechanisms of Action of Antimutagens from Sage (Salvia officinalis) and Basil (Ocimum basilicum) In: Mishra R., editor. Mutagenesis. InTechOpen; London, UK: 2012.
Marino M., Bersani C., Comi G. Impedance Measurements to Study the Antimicrobial Activity of Essential Oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001;67:187–195. doi: 10.1016/S0168-1605(01)00447-0. PubMed DOI
Hayouni E.A., Chraief I., Abedrabba M., Bouix M., Leveau J.-Y., Mohammed H., Hamdi M. Tunisian Salvia officinalis L. and Schinus molle L. Essential Oils: Their Chemical Compositions and Their Preservative Effects against Salmonella Inoculated in Minced Beef Meat. Int. J. Food Microbiol. 2008;125:242–251. doi: 10.1016/j.ijfoodmicro.2008.04.005. PubMed DOI
O’Brien T.F. Emergence, Spread, and Environmental Effect of Antimicrobial Resistance: How Use of an Antimicrobial Anywhere Can Increase Resistance to Any Antimicrobial Anywhere Else. Clin. Infect. Dis. 2002;34:S78–S84. doi: 10.1086/340244. PubMed DOI
Karamanos A.J. Cultivation and Breeding. In: Kintzios S.E., editor. The Cultivation of Sage. 14th ed. Taylor & Francis e-Library; Amsterdam, The Netherlands: 2000.
Sensoy N.D. Master’s Thesis. Institute of Science and Technology, Gazi University; Ankara, Turkey: 2007. Obtaining of Natural Antioxidant from Sage Leaves (Salvia officinalis) with Supercritical Carbon Dioxide Extraction.
Mohammad S.M. A Study on Sage (Salvia officinalis) J. Appl. Sci Res. 2011;7:1261–1262.
Karyotis D., Skandamis P.N., Juneja V.K. Thermal Inactivation of Listeria monocytogenes and Salmonella spp. in Sous-Vide Processed Marinated Chicken Breast. Food Res. Int. 2017;100:894–898. doi: 10.1016/j.foodres.2017.07.078. PubMed DOI
Juneja V.K., Bari M.L., Inatsu Y., Kawamoto S., Friedman M. Thermal Destruction of Escherichia Coli O157:H7 in Sous-Vide Cooked Ground Beef as Affected by Tea Leaf and Apple Skin Powders. J. Food Prot. 2009;72:860–865. doi: 10.4315/0362-028X-72.4.860. PubMed DOI
Juneja V.K., Osoria M., Tiwari U., Xu X., Golden C.E., Mukhopadhyay S., Mishra A. The Effect of Lauric Arginate on the Thermal Inactivation of Starved Listeria monocytogenes in Sous-Vide Cooked Ground Beef. Food Res. Int. 2020;134:109280. doi: 10.1016/j.foodres.2020.109280. PubMed DOI
Abel T., Boulaaba A., Lis K., Abdulmawjood A., Plötz M., Becker A. Inactivation of Listeria monocytogenes in Game Meat Applying Sous Vide Cooking Conditions. Meat Sci. 2020;167:108164. doi: 10.1016/j.meatsci.2020.108164. PubMed DOI
Smith C.J., Olszewska M.A., Diez-Gonzalez F. Selection and Application of Natural Antimicrobials to Control Clostridium perfringens in Sous-Vide Chicken Breasts. Int. J. Food Microbiol. 2021;347:109193. doi: 10.1016/j.ijfoodmicro.2021.109193. PubMed DOI
Nissen H., Rosnes J.T., Brendehaug J., Kleiberg G.H. Safety Evaluation of Sous Vide-Processed Ready Meals. Lett. Appl. Microbiol. 2002;35:433–438. doi: 10.1046/j.1472-765X.2002.01218.x. PubMed DOI
Hyytiä-Trees E., Skyttä E., Mokkila M., Kinnunen A., Lindström M., Lähteenmäki L., Ahvenainen R., Korkeala H. Safety Evaluation of Sous Vide-Processed Products with Respect to Nonproteolytic Clostridium botulinum by Use of Challenge Studies and Predictive Microbiological Models. Appl. Environ. Microbiol. 2000;66:223–229. doi: 10.1128/AEM.66.1.223-229.2000. PubMed DOI PMC
Cosansu S., Juneja V.K. Growth of Clostridium perfringens in Sous Vide Cooked Ground Beef with Added Grape Seed Extract. Meat Sci. 2018;143:252–256. doi: 10.1016/j.meatsci.2018.05.013. PubMed DOI
Lindström M., Mokkila M., Skyttä E., Hyytiä-Trees E., Lähteenmäki L., Hielm S., Ahvenainen R., Korkeala H. Inhibition of Growth of Nonproteolytic Clostridium botulinum Type B in Sous Vide Cooked Meat Products Is Achieved by Using Thermal Processing but Not Nisin. J. Food Prot. 2001;64:838–844. doi: 10.4315/0362-028X-64.6.838. PubMed DOI
Šojić B., Pavlić B., Zeković Z., Tomović V., Ikonić P., Kocić-Tanackov S., Džinić N. The Effect of Essential Oil and Extract from Sage (Salvia officinalis L.) Herbal Dust (Food Industry by-Product) on the Oxidative and Microbiological Stability of Fresh Pork Sausages. LWT. 2018;89:749–755. doi: 10.1016/j.lwt.2017.11.055. DOI
Bor T., Aljaloud S.O., Gyawali R., Ibrahim S.A. Fruits, Vegetables, and Herbs. Elsevier; Amsterdam, The Netherlands: 2016. Antimicrobials from Herbs, Spices, and Plants; pp. 551–578.
Gyawali R., Ibrahim S.A. Natural Products as Antimicrobial Agents. Food Control. 2014;46:412–429. doi: 10.1016/j.foodcont.2014.05.047. DOI
Gyawali R., Hayek S.A., Ibrahim S.A. Handbook of Natural Antimicrobials for Food Safety and Quality. Elsevier; Amsterdam, The Netherlands: 2015. Plant Extracts as Antimicrobials in Food Products; pp. 31–47.
Raeisi S., Ojagh S.M., Sharifi-Rad M., Sharifi-Rad J., Quek S.Y. Evaluation of Allium paradoxum (M.B.) G. Don. and Eryngium caucasicum Trauve. Extracts on the Shelf-Life and Quality of Silver Carp (Hypophthalmichthys molitrix) Fillets during Refrigerated Storage: RAEISI et al. J. Food Saf. 2017;37:e12321. doi: 10.1111/jfs.12321. DOI
Raeisi S., Sharifi-Rad M., Quek S.Y., Shabanpour B., Sharifi-Rad J. Evaluation of Antioxidant and Antimicrobial Effects of Shallot (Allium ascalonicum L.) Fruit and Ajwain (Trachyspermum ammi (L.) Sprague) Seed Extracts in Semi-Fried Coated Rainbow Trout (Oncorhynchus mykiss) Fillets for Shelf-Life Extension. LWT Food Sci. Technol. 2016;65:112–121. doi: 10.1016/j.lwt.2015.07.064. DOI
Longaray Delamare A.P., Moschen-Pistorello I.T., Artico L., Atti-Serafini L., Echeverrigaray S. Antibacterial Activity of the Essential Oils of Salvia officinalis L. and Salvia triloba L. Cultivated in South Brazil. Food Chem. 2007;100:603–608. doi: 10.1016/j.foodchem.2005.09.078. DOI
Dorman H.J.D., Deans S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2000;88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x. PubMed DOI
Abdelkader M., Ahcen B., Rachid D., Hakim H. Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.) Int. J. Biol. Life Agric. Sci. 2015;8:1253–1257. doi: 10.5281/zenodo.1326832. DOI
Miladinovic D., Lj M. Antimicrobial Activity of Essential Oil of Sage from Serbia. Facta Univ. Ser. Phys. Chem. Technol. 2000;2:97–100.
Youssef M.K., Gill C.O., Yang X. Storage Life at 2 °C or −1.5 °C of Vacuum-Packaged Boneless and Bone-in Cuts from Decontaminated Beef Carcasses: Storage Life of Vacuum-Packaged Beef Primals from Decontaminated Carcasses. J. Sci. Food Agric. 2014;94:3118–3124. doi: 10.1002/jsfa.6659. PubMed DOI
Youssef M.K., Gill C.O., Tran F., Yang X. Unusual Compositions of Microflora of Vacuum-Packaged Beef Primal Cuts of Very Long Storage Life. J. Food Prot. 2014;77:2161–2167. doi: 10.4315/0362-028X.JFP-14-190. PubMed DOI
Yang X., Tran F., Wolters T. Microbial Ecology of Decontaminated and Not Decontaminated Beef Carcasses. J. Food Res. 2017;6:85. doi: 10.5539/jfr.v6n5p85. DOI
Wang H., He A., Yang X. Dynamics of Microflora on Conveyor Belts in a Beef Fabrication Facility during Sanitation. Food Control. 2018;85:42–47. doi: 10.1016/j.foodcont.2017.09.017. DOI