Preparation of Gelatin from Broiler Chicken Stomach Collagen
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2022/003
This research was funded by the Internal Grant Agency of the Faculty of Technology, Tomas Bata University in Zlín.
PubMed
36613343
PubMed Central
PMC9818662
DOI
10.3390/foods12010127
PII: foods12010127
Knihovny.cz E-zdroje
- Klíčová slova
- biotechnology, chicken stomachs, collagen, enzyme conditioning, food, gelatin, meat by-products, pharmacy, proteins,
- Publikační typ
- časopisecké články MeSH
With the increasing consumption of poultry meat around the world, the use of chicken stomachs as a source of collagen is being offered. The objective of this study was to extract gelatin from the stomachs of broiler chickens and to estimate their gel strength, ash content, viscosity, gelling point, melting point, clarity and digestibility. An innovative biotechnological method based on the conditioning of collagen with a microbial endoproteinase (Protamex®) and hot-water extraction was used to control the chemical and thermal denaturation process of collagen to prepare gelatin. The experiments were planned using a Taguchi design, 2 factors at 3 levels; factor A for the amount of proteolytic enzyme (0.10, 0.15 and 0.20%) and factor B for the extraction temperature (55.0, 62.5 and 70.0 °C). Data were statistically processed and analyzed at a significance level of 95%. The gelatin yield averaged 65 ± 8%; the gel strength ranged from 25 ± 1 to 439 ± 6 Bloom, the viscosity from 1.0 ± 0.4 to 3.40 ± 0.03 mPa·s, gelling point from 14.0 ± 2.0 to 22.0 ± 2.0 °C, melting point from 28.0 ± 1.0 to 37.0 ± 1.0 °C. The digestibility of gelatin was 100.0% in all samples; the ash content was very low (0.44 ± 0.02-0.81 ± 0.02%). The optimal conditions for the enzymatic treatment of collagen from chicken stomachs were achieved at a higher temperature (70.0 °C) and a lower amount of enzyme (0.10-0.15%). Conditioning chicken collagen with a microbial endoproteinase is an economically and environmentally friendly processing method, an alternative to the usual acid- or alkaline-based treatment that is used industrially. The extracted products can be used for food and pharmaceutical applications.
Zobrazit více v PubMed
Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Litwack G. Human Biochemistry. 1st ed. Academic Press; Los Angeles, CA, USA: 2017. pp. 63–129.
Sántiz-Gómez M.A., Mazorra-Manzano M.A., Ramírez-Guerra H.E., Scheuren-Acevedo S.M., Navarro-García G., Pacheco-Aquilar R., Ramírez-Suárez J.C. Effect of acid treatment on extraction yield and gel strength of gelatin from whiptail stingray skin. Food Sci. Biotechnol. 2019;28:751–757. doi: 10.1007/s10068-018-0514-y. PubMed DOI PMC
Fatemeh R., Javad K., Mahdi K. Optimization of gelatin extraction from chicken deboner residue using RSM method. J. Food Sci. Technol. 2013;50:374–380. PubMed PMC
Kristoffersen K.A., Afseth N.K., Böcker U., Dankel K.R., Rønninger M.A., Lislelid A., Ofstad R., Lindberg D., Wubshet S.G. Post-enzymatic hydrolysis heat treatment as an essential unit operation for collagen solubilization from poultry by-products. Food Chem. 2022;382:132201. doi: 10.1016/j.foodchem.2022.132201. PubMed DOI
Robinson P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015;59:1–41. doi: 10.1042/bse0590001. PubMed DOI PMC
Sachchidanand S.G., Vivek M., Maumita D.M., Parveen S., Kumar R.R. Amino acid derived biopolymers: Recent advances and biomedical applications. Int. J. Biol. Macromol. 2021;188:542–567. PubMed
Holliday G.L., Fischer J.D., Mitchell J.B.O., Thornton J.M. Characterizing the complexity of enzymes on the basis of their mechanisms and structures with a bio-computational analysis. FEBS J. 2011;278:3835–3845. doi: 10.1111/j.1742-4658.2011.08190.x. PubMed DOI PMC
Mariod A.A., Adam H.F. Review: Gelatin, source, extraction and industrial applications. Acta Sci. Pol. Technol. Aliment. 2013;12:135–147.
Ferraro V., Anton M., Santé-Lhoutellier V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends Food Sci. Technol. 2016;51:65–75. doi: 10.1016/j.tifs.2016.03.006. DOI
Badway H.M.R., Abd El-Moniem S.M., Soliman A.M., Rabie M.A. Physicochemical properties of gelatin extracted from Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) fish skins. Zagazig J. Agric. Res. 2019;46:1529–1537. doi: 10.21608/zjar.2019.48170. DOI
Tanbir A., Amin I., Siti A.A., Khalilah A.K., Teik K.L., Elmutaz A.A., Jurhamid C.I., Awis Q.S. Effects of ultrasound assisted extraction in conjugation with aid of actinidin on the molecular and physicochemical properties of bovine hide gelatin. Molecules. 2018;23:730. PubMed PMC
Jridi M., Nasri R., Lassoued I., Souissi N., Mbarek A., Barkia A., Nasri M. Chemical and biophysical properties of gelatins extracted from alkali-pretreated skin of cuttlefish (Sepia officinalis) using pepsin. Food Res. Int. 2013;54:1680–1687. doi: 10.1016/j.foodres.2013.09.026. DOI
Sulieman A.M.E. Effects of incorporating chicken’s gizzards and abdominal fat in the quality of burger meat products. J. Food Sci. Nutr. 2013;3:91–94.
Ahmad M., Benjakul S. Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocoll. 2011;25:381–388. doi: 10.1016/j.foodhyd.2010.07.004. DOI
Djagny K.B., Wang Z., Xu S. Gelatin: A valuable protein for food and pharmaceutical industries, review. Crit. Rev. Food Sci. Nutr. 2001;41:481–492. doi: 10.1080/20014091091904. PubMed DOI
Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI
Suderman N., Sarbon N.M. Optimization of chicken skin gelatin film production with different glycerol concentrations by response surface methodology (RSM) approach. J. Food Sci. Technol. 2020;57:463–472. doi: 10.1007/s13197-019-04074-0. PubMed DOI PMC
Sompie M., Triasih A. Proceedings of IOP Conference Series: Earth and Environmental Science, Proceedings of International Symposium on Food and Agro-Biodiversity (ISFA) 2017, Semarang, Indonesia, 26–27 September 2017. IOP Publishing Ltd.; Beijing, China: 2017. Effect of extraction temperature on characteristics of chicken legskin gelatin; p. 12089.
Montero M., Acosta Ó.G. Tuna skin gelatin production: Optimization of extraction steps and process scale-up. CyTA-J. Food. 2020;18:580–590. doi: 10.1080/19476337.2020.1801849. DOI
Taufik M., Triatmojo S., Erwanto Y., Santoso U. Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin; Proceedings of the 5th International Seminar on Tropical Animal Production; Yogyakarta, Indonesia. 19–22 October 2010; pp. 649–656.
Choe J., Kim H.Y. Effects of chicken feet gelatin extracted at different temperatures and wheat fiber with different particle size on the physicochemical properties of gels. Poult. Sci. 2018;97:1082–1088. doi: 10.3382/ps/pex381. PubMed DOI
Mokrejš P., Mrázek P., Gál R., Pavlačková J. Biotechnological preparation of gelatins from chicken feet. Polymers. 2019;11:1060. doi: 10.3390/polym11061060. PubMed DOI PMC
Eurostat Statistics Explained, Meat Production Statistics. [(accessed on 14 November 2022)]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Meat_production_statistics.
Jayathilakan K., Sultana K., Radhakrishna K., Bawa A.S. Utilization of by products and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012;49:278–293. doi: 10.1007/s13197-011-0290-7. PubMed DOI PMC
OECD-FAO Agricultural Outlook 2019–2028. [(accessed on 15 November 2022)]. Available online: http://www.fao.org/3/ca4076en/ca4076en.pdf.
Alao B.O., Falowo A.B., Chulayo A., Muchenje V. The potential of animal by-products in food systems: Production, prospect and challenges. Sustainability. 2017;9:1089. doi: 10.3390/su9071089. DOI
Huda N., Seow E.K., Normawatti M.N., Muhammad N.A.N. Preliminary study on physicochemical properties of duck feet collagen. Int. J. Poult. Sci. 2013;12:615–621. doi: 10.3923/ijps.2013.615.621. DOI
Mozhiarasi V., Natarajan T.S. Slaughterhouse and poultry wastes: Management practices, feedstocks for renewable energy production, and recovery of value added products. Biomass Convers. Biorefin. 2022 doi: 10.1007/s13399-022-02352-0. PubMed DOI PMC
The World Bank. [(accessed on 13 July 2022)]. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html.
Pinto J., Boavida-Dias R., Matos H.A., Azevedo J. Analysis of the food loss and waste valorisation of animal by-products from the retail sector. Sustainability. 2022;14:2830. doi: 10.3390/su14052830. DOI
Chen D.M.C., Bodirsky B.L., Krueger T., Misgra A., Popp A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020;15:074021. doi: 10.1088/1748-9326/ab8659. DOI
Mokrejš P., Gál R., Pavlačková J., Janáčová D. Valorization of a by-product from the production of mechanically deboned chicken meat for preparation of gelatins. Molecules. 2021;26:349. doi: 10.3390/molecules26020349. PubMed DOI PMC
Gál R., Mokrejš P., Mrázek P., Pavlačková J., Janáčová D., Orsavová J. Chicken heads as a promising by-product for preparation of food gelatins. Molecules. 2020;25:494. doi: 10.3390/molecules25030494. PubMed DOI PMC
Novozymes. [(accessed on 23 July 2022)]. Available online: https://biosolutions.novozymes.com/en/animal-protein/products/eu-protamex?utm_source=google&utm_medium=cpc&utm_campaign=FB-Protein-ingredients_2021_emea_petfood&gclid=Cj0KCQiAyMKbBhD1ARIsANs7rEHYH-qGQfXkEHiFR61LyAXcHRlACXiDtqmoBsqQoIcC6Lzsx3SgqoQaAhMgEALw_wcB.
Zichová J. Planning of Experiments a Predictive Multivariate Analysis [in Czech] 1st ed. Karolinum; Prague, Czechia: 2008. pp. 11–68.
Zhang J.Z., Chen J.C., Kirby E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 2007;184:233–239. doi: 10.1016/j.jmatprotec.2006.11.029. DOI
Standard Testing Methods for Edible Gelatin. Official Procedure of the Gelatin Manufacturers Institute of America, Inc. [(accessed on 17 June 2022)]. Available online: http://www.gelatin-gmia.com/images/GMIA_Official_Methods_of_Gelatin_Revised_2013.pdf/
Moosavi-Nasab M., Yazdani-Dehnavi M., Mirzapour-Kouhdasht A. The effects of enzymatically aided acid-swelling process on gelatin extracted from fish by-products. Food Sci. Nutr. 2020;8:5017–5025. doi: 10.1002/fsn3.1799. PubMed DOI PMC
Ninan G., Jose J., Abubacker Z. Preparation and characterization of gelatin extracted from the skins of rohu (Labeo rohita) and Common Carp (Cyprinus carpio) J. Food Process. Preserv. 2011;35:143–161. doi: 10.1111/j.1745-4549.2009.00467.x. DOI
Mišurcová L., Kráčmar S., Klejdus B., Vacek J. Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J. Food Sci. 2010;28:27–35. doi: 10.17221/111/2009-CJFS. DOI
European Pharmacopoeia 9.0. European Directorate for the Quality of Medicines & Health Care. 2017. [(accessed on 9 February 2021)]. Available online: https://www.edqm.eu/en/news/shutdown-european-pharmacopoeia-9th-edition.
Mrázek P., Gál R., Mokrejš P., Orsavová J., Janáčová D. Biotechnological preparation of chicken skin gelatine using factorial design of experiments. Food Biosci. 2022;47:101702. doi: 10.1016/j.fbio.2022.101702. DOI
Schrieber R., Gareis H. Gelatine Handbook—Theory and Industrial Practice. 1st ed. Wiley-VCH; Weinheim, Germany: 2007. pp. 45–309.
Zhu S., Huang M., Feng G., Miao Y., Wu H., Zeng M., Lo Y.M. Gelatin versus its two major degradation products, prolyl-hydroxyproline and glycine, as supportive therapy in experimental colitis in mice. Food Sci. Nutr. 2018;6:1023–1031. doi: 10.1002/fsn3.639. PubMed DOI PMC
Bordin C.C.D., Naves M. Hydrolyzed collagen (gelatin) decreases food efficiency and the bioavailability of high-quality protein in rats. World Rev. Nutr. Diet. 2015;28:421–430. doi: 10.1590/1415-52732015000400008. DOI
Vázquez J.A., Hermida-Merino C., Hermida-Merino D., Piñeiro M.M., Johnsen J., Sotelo C.G., Pérez-Martín R.I., Valcarcel J. Characterization of gelatin and hydrolysates from valorization of farmed salmon skin by-products. Polymers. 2021;13:2828. doi: 10.3390/polym13162828. PubMed DOI PMC
Food and Agriculture Organization of the United Nations Gateway to Poultry Production and Products. [(accessed on 6 December 2022)]. Available online: https://www.fao.org/poultry-production-products/production/en/
Barbooti M.M., Raouf S.R., Al-Hamdani F.H.K. Optimization of production of food grade gelatin from bovine hide wastes. Eng. Tech. J. 2008;26:240–253.
Collagen Hydrolysates from Animal By-Products in Topical Cosmetic Formulations