Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study

. 2023 Feb 20 ; 12 (4) : . [epub] 20230220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36836242

Grantová podpora
Q39 (PROGRES) Charles University
IGA-KZ-2016-2-8 Krajská Zdravotní

Shock index (a ratio between heart rate and systolic blood pressure) predicts transfusion requirements and the need for haemostatic resuscitation in severe trauma patients. In the present study, we aimed to determine whether prehospital and on-admission shock index values can be used to predict low plasma fibrinogen in trauma patients. Between January 2016 and February 2017, trauma patients admitted from the helicopter emergency medical service into two large trauma centres in the Czech Republic were prospectively assessed for demographic, laboratory and trauma-associated variables and shock index at scene, during transport and at admission to the emergency department. Hypofibrinogenemia defined as fibrinogen plasma level of 1.5 g·L-l was deemed as a cut-off for further analysis. Three hundred and twenty-two patients were screened for eligibility. Of these, 264 (83%) were included for further analysis. The hypofibrinogenemia was predicted by the worst prehospital shock index with the area under the receiver operating characteristics curve (AUROC) of 0.79 (95% CI 0.64-0.91) and by the admission shock index with AUROC of 0.79 (95% CI 0.66-0.91). For predicting hypofibrinogenemia, the prehospital shock index ≥ 1 has 0.5 sensitivity (95% CI 0.19-0.81), 0.88 specificity (95% CI 0.83-0.92) and a negative predictive value of 0.98 (0.96-0.99). The shock index may help to identify trauma patients at risk of hypofibrinogenemia early in the prehospital course.

Zobrazit více v PubMed

World Health Organization . Injuries Violence The Facts. World Health Organization; Geneva, Switzerland: 2010. [(accessed on 15 October 2022)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/149798/9789241508018_eng.pdf.

Eastridge B.J., Holcomb J.B., Shackelford S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion. 2019;59:1423–1428. doi: 10.1111/trf.15161. PubMed DOI

Candefjord S., Asker L., Caragounis E.-C. Mortality of trauma patients treated at trauma centers compared to non-trauma centers in Sweden: A retrospective study. Eur. J. Trauma Emerg. Surg. 2022;48:525–536. doi: 10.1007/s00068-020-01446-6. PubMed DOI PMC

Tien H.C., Spencer F., Tremblay L.N., Rizoli S.B., Brennemn F.D. Preventable deaths from hemorrhage at a Level I Canadian trauma center. J. Trauma: Inj. Infect. Crit. Care. 2007;62:142–146. doi: 10.1097/01.ta.0000251558.38388.47. PubMed DOI

Sauaia A., Moore F., Moore E.E., Moser K.S., Brennan R., Read R.A., Pons P.T. Epidemiology of Trauma Deaths: A Reassessment. J. Trauma Acute Care Surg. 1995;38:185–193. doi: 10.1097/00005373-199502000-00006. PubMed DOI

Brohi K., Singh J., Heron M., Coats T. Acute Traumatic Coagulopathy. J. Trauma. 2003;54:1127–1130. doi: 10.1097/01.TA.0000069184.82147.06. PubMed DOI

Moore E.E., Moore H.B., Kornblith L.Z., Neal M.D., Hoffman M., Mutch N.J., Schöchl H., Hunt B.J., Sauaia A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 2021;7:30. doi: 10.1038/s41572-021-00264-3. PubMed DOI PMC

Johansson P.I., Stensballe J., Ostrowski S.R. Shock induced endotheliopathy (SHINE) in acute critical illness—A unifying pathophysiologic mechanism. Crit. Care. 2017;21:25. doi: 10.1186/s13054-017-1605-5. PubMed DOI PMC

Chang R., Cardenas J.C., Wade C.E., Holcomb J. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016;128:1043–1049. doi: 10.1182/blood-2016-01-636423. PubMed DOI PMC

Chambers L.A., Chow S.J., Shaffer L.E.T. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am. J. Clin. Pathol. 2011;136:364–370. doi: 10.1309/AJCPH16YXJEFSHEO. PubMed DOI

Schöchl H., Cotton B., Inaba K., Niebauer U., Fischer H., Voeckel W., Solomon C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15:R265. doi: 10.1186/cc10539. PubMed DOI PMC

Inaba K., Karamanos E., Lustenberger T., Schöchl H., Shulman I., Nelson J., Rhee P., Talving P., Lam L., Demetriades D. Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J. Am. Coll. Surg. 2013;216:290–297. doi: 10.1016/j.jamcollsurg.2012.10.017. PubMed DOI

Hagemo J.S., Stanworth S., Juffermans N.P., Brohi K., Cohen M., Johansson P., Røislien J., Eken T., Næss P.A., Gaarder C. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: A multicentre observational study. Crit Care. 2014;18:R52. doi: 10.1186/cc13798. PubMed DOI PMC

Rourke C., Curry N., Khan S., Taylor R., Raza I., Davenport R., Stanworth S., Brohi K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J. Thromb. Haemost. 2012;10:1342–1351. doi: 10.1111/j.1538-7836.2012.04752.x. PubMed DOI

Brunclikova M., Simurda T., Zolkova J., Sterankova M., Skornova I., Dobrotova M., Kolkova Z., Loderer D., Grendar M., Hudecek J., et al. Heterogeneity of Genotype–Phenotype in Congenital Hypofibrinogenemia—A Review of Case Reports Associated with Bleeding and Thrombosis. J. Clin. Med. 2022;11:1083. doi: 10.3390/jcm11041083. PubMed DOI PMC

Spahn D.R., Bouillon B., Cerny V., Duranteau J., Filipescu D., Hunt B., Komadina R., Maegele M., NArdi G., Riddez L., et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care. 2019;23:98. PubMed PMC

Khan S., Davenport R., Raza I., Glasgow S., De’Ath H., Johansson P., Curry N., Stanworth S., Gaarder C., Brohi K. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015;41:239–247. doi: 10.1007/s00134-014-3584-1. PubMed DOI

Innerhofer P., Fries D., Mittermayr M., Innerhofer N., von Langen D., Hell T., Gruber G., Schmid S., Friesenecker B., Lorenz I., et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017;4:e258–e271. doi: 10.1016/S2352-3026(17)30077-7. PubMed DOI

Yamamoto K., Yamaguchi A., Sawano M., Matsuda M., Anan M., Inokuchi K., Sugiyama S. Pre-emptive administration of fibrinogen concentrate contributes to improved prognosis in patients with severe trauma. Trauma Surg Acute Care Open. 2016;1 doi: 10.1136/tsaco-2016-000037. PubMed DOI PMC

Grottke O., Mallaiah S., Karkouti K., Saner F., Haas T. Fibrinogen Supplementation and Its Indications. Semin. Thromb. Hemost. 2020;46:38–49. doi: 10.1055/s-0039-1696946. PubMed DOI

Mitra B., Cameron P.A., Mori A., Maini A., Fitzgerald M., Paul E., Street A. Early prediction of acute traumatic coagulopathy. Resuscitation. 2011;82:1208–1213. doi: 10.1016/j.resuscitation.2011.04.007. PubMed DOI

Schlimp C.J., Voelckel W., Inaba K., Maegele M., Ponschab M., Schöchl H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit. Care. 2013;17:R137. doi: 10.1186/cc12816. PubMed DOI PMC

Cohen M.J., Kutcher M., Redick B., Nelson M., Call M., Knudson M., Schreiber M., Bulger E., Muskat P., Alarcon L., et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J. Trauma Acute Care Surg. 2013;75:S40–S47. doi: 10.1097/TA.0b013e31828fa43d. PubMed DOI PMC

Gauss T., Campion S., Kerever S., Eurin M., Raux M., Harrois A., Paugam-Burtz C., Hamada S. Fibrinogen on Admission in Trauma score. Eur. J. Anaesthesiol. 2018;35:25–32. doi: 10.1097/EJA.0000000000000734. PubMed DOI

Allgöwer M., Burri C. Schockindex. Dtsch. Med. Wochenschr. 1967;92:1947–1950. doi: 10.1055/s-0028-1106070. PubMed DOI

Vandromme M.J., Griffin R.L., Kerby J.D., McGwin G., Rue L., Weinberg J. Identifying risk for massive transfusion in the relatively normotensive patient: Utility of the prehospital shock index. J. Trauma: Inj. Infect. Crit. Care. 2011;70:384–390. doi: 10.1097/TA.0b013e3182095a0a. PubMed DOI

Cannon C.M., Braxton C.C., Kling-Smith M., Mahnken J., Carlton E., Moncure M. Utility of the shock index in predicting mortality in traumatically injured patients. J. Trauma: Inj. Infect. Crit. Care. 2009;67:1426–1430. doi: 10.1097/TA.0b013e3181bbf728. PubMed DOI

Mutschler M., Nienaber U., Münzberg M., Wölfl C., Schoechl H., Paffrath T., Bouillon B., Maegele M. The Shock Index revisited—A fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU®. Crit. Care. 2013;17:R172. doi: 10.1186/cc12851. PubMed DOI PMC

Era S., Matsunaga S., Matsumura H., Murayama H., Takai Y., Seki H. Usefulness of shock indicators for determining the need for blood transfusion after massive obstetric hemorrhage. J. Obstet. Gynaecol. Res. 2015;41:39–43. doi: 10.1111/jog.12480. PubMed DOI

Lamb C.M., Macgoey P., Navarro A.P., Brooks A. Damage control surgery in the era of damage control resuscitation. Br. J. Anaesth. 2014;113:242–249. doi: 10.1093/bja/aeu233. PubMed DOI

Vang M., Østberg M., Steinmetz J., Rasmussen L. Shock index as a predictor for mortality in trauma patients: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2022;48:2559–2566. doi: 10.1007/s00068-022-01932-z. PubMed DOI

James A., Abback P.S., Pasquier P., Ausset S., Duranteau J., Hoffman C., Hamada S. The conundrum of the definition of haemorrhagic shock: A pragmatic exploration based on a scoping review, experts’ survey and a cohort analysis. Eur. J. Trauma Emerg. Surg. 2022;48:4639–4649. doi: 10.1007/s00068-022-01998-9. PubMed DOI PMC

Mutschler M., Nienaber U., Brockamp T., Wafaisade A., Fabian T., Paffrath T., Bouzillon B., Maegele M. Renaissance of base deficit for the initial assessment of trauma patients: A base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit. Care. 2013;17:R42. doi: 10.1186/cc12555. PubMed DOI PMC

Rossaint R., Bouillon B., Cerny V., Coats T., Duranteau J., Fernandez-Mondejar E., Filipescu D., Hunt B., Komadina R., Nardi G., et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fourth edition. Crit. Care. 2016;20:100. doi: 10.1186/s13054-016-1265-x. PubMed DOI PMC

Aubron C., Reade M.C., Fraser J.F., Cooper D. Efficacy and safety of fibrinogen concentrate in trauma patients—A systematic review. J. Crit. Care. 2014;29:e11–e17. doi: 10.1016/j.jcrc.2013.12.011. PubMed DOI

Ziegler B., Bachler M., Haberfellner H., Niederwanger C., Innerhofer P., Kaufman M., Maegele M., Martinowitz U., Nebl C., Oswald E., et al. Efficacy of prehospital administration of fibrinogen concentrate in trauma patients bleeding or presumed to bleed (FIinTIC): A multicentre, double-blind, placebo-controlled, randomised pilot study. Eur. J. Anaesthesiol. 2021;38:348–357. doi: 10.1097/EJA.0000000000001366. PubMed DOI PMC

Volod O., Bunch C.M., Zackariya N., Moore E., Moore H., Kwaan H., Al-Fadhl M., Patel S., Wiarda G., Al-Fadhl H.D., et al. Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices. J. Clin. Med. 2022;11:860. doi: 10.3390/jcm11030860. PubMed DOI PMC

Hagemo J.S. Prehospital detection of traumatic coagulopathy. Transfusion. 2013;53:48S–51S. doi: 10.1111/trf.12035. PubMed DOI

Paladino L., Subramanian R.A., Nabors S., Sinert R. The utility of shock index in differentiating major from minor injury. Eur. J. Emerg. Med. 2011;18:94–98. doi: 10.1097/MEJ.0b013e32833f212b. PubMed DOI

Costa A., Carron P.-N., Zingg T., Roberts I., Ageron F. Early identification of bleeding in trauma patients: External validation of traumatic bleeding scores in the Swiss Trauma Registry. Crit. Care. 2022;26:296. doi: 10.1186/s13054-022-04178-8. PubMed DOI PMC

Tonglet M.L., Minon J.M., Seidel L., Poplavsky J., Vergnion M. Prehospital identification of trauma patients with early acute coagulopathy and massive bleeding: Results of a prospective non-interventional clinical trial evaluating the Trauma Induced Coagulopathy Clinical Score (TICCS) Crit. Care. 2014;18:648. doi: 10.1186/s13054-014-0648-0. Epub ahead of print. PubMed DOI PMC

David J.-S., Voiglio E.-J., Cesareo E., Vassal O., Decullier E., Gueugniaud P., Peyrefitte S., Tazarourte K. Prehospital parameters can help to predict coagulopathy and massive transfusion in trauma patients. Vox Sang. 2017;112:557–566. doi: 10.1111/vox.12545. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...