Fatigue Crack Growth Rate Description of RF-Plasma-Sprayed Refractory Metals and Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-143139S
Czech Science Foundation
PubMed
36837343
PubMed Central
PMC9964086
DOI
10.3390/ma16041713
PII: ma16041713
Knihovny.cz E-zdroje
- Klíčová slova
- RF plasma spray, analytical model, fatigue crack growth, refractory materials,
- Publikační typ
- časopisecké články MeSH
A fitting method capable of describing the fatigue crack growth rate (FCGR) data in all stages of crack propagation by a simple Forman-style analytical formula was developed. To demonstrate its robustness, this method was used to quantify the fracture behavior of RF-plasma-sprayed W, Mo, W-Mo composite, and four selected Ni-based tungsten heavy alloys (WHA). The fitted FCGR parameters categorized the studied materials into two distinct sets. W, Mo, and W-Mo composite deposits made from inherently brittle refractory metals that contained a range of defects inherent to plasma spray process represented the first class. This class was characterized by low fracture toughness and a relatively wide range of fatigue crack growth thresholds. The second class of materials was represented by WHA. Here, the deposit defects were suppressed by liquid state diffusion that formed a typical WHA structure consisting of a Ni-rich matrix and large spherical W reinforcement particles. The WHA generally showed higher fatigue crack growth thresholds, but differed in fracture toughness values based on the W particle concentrations. The obtained fracture mechanical data represent a reference dataset of plasma-sprayed refractory materials, and their classification into groups clearly demonstrates the capabilities of the developed method to capture a wide range of different types of FCGR behavior.
Zobrazit více v PubMed
Gludovatz B., Wurster S., Hoffmann A., Pippan R. Fracture toughness of polycrystalline tungsten alloys. Int. J. Refract. Met. Hard Mater. 2010;28:674–678. doi: 10.1016/j.ijrmhm.2010.04.007. DOI
Taguchi K., Nakadate K., Matsuo S., Tokunaga K., Kurishita H. Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum. J. Nucl. Mater. 2018;498:445–457. doi: 10.1016/j.jnucmat.2017.11.025. DOI
Tripathi J., Novakowski T., Joseph G., Linke J., Hassanein A. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation. J. Nucl. Mater. 2015;464:97–106. doi: 10.1016/j.jnucmat.2015.04.022. DOI
Neu R., Maier H., Balden M., Elgeti S., Gietl H., Greuner H., Herrmann A., Houben A., Rohde V., Sieglin B., et al. Investigations on tungsten heavy alloys for use as plasma facing material. Fusion Eng. Des. 2017;124:450–454. doi: 10.1016/j.fusengdes.2017.01.043. DOI
Cizek J., Kovarik O., Siska F., Bensch J., Cupera J., Matejkova M., Siegl J., Chraska T., Khor K.A. Increasing fatigue endurance of hydroxyapatite and rutile plasma sprayed biocomponents by controlling deposition in-flight properties. ACS Biomater. Sci. Eng. 2019;5:1703–1714. doi: 10.1021/acsbiomaterials.8b01545. PubMed DOI
Heuer S., Matějíček J., Vilémová M., Koller M., Illkova K., Veverka J., Weber T., Pintsuk G., Coenen J.W., Linsmeier C. Atmospheric plasma spraying of functionally graded steel/tungsten layers for the first wall of future fusion reactors. Surf. Coatings Technol. 2019;366:170–178. doi: 10.1016/j.surfcoat.2019.03.017. DOI
Klecka J., Cizek J., Matejicek J., Lukac F., Vala J. Thick functionally-graded W-316L composite coatings for nuclear fusion applications. Nucl. Mater. Energy. 2023;34:101373. doi: 10.1016/j.nme.2023.101373. DOI
Kovarik O., Haušild P., Siegl J., Chráska T., Matějíček J., Pala Z., Boulos M. The influence of substrate temperature on properties of aps and vps w coatings. Surf. Coat. Technol. 2015;268:7–14. doi: 10.1016/j.surfcoat.2014.07.041. DOI
Kovarik O., Materna A., Siegl J., Cizek J., Klecka J. Fatigue crack growth in plasma-sprayed refractory materials. J. Therm. Spray Technol. 2019;28:87–97. doi: 10.1007/s11666-018-0790-3. DOI
Matějíček J., Kavka T., Bertolissi G., Ctibor P., Vilémová M., Mušálek R., Nevrlá B. The role of spraying parameters and inert gas shrouding in hybrid water-argon plasma spraying of tungsten and copper for nuclear fusion applications. J. Therm. Spray Technol. 2013;22:744–755. doi: 10.1007/s11666-013-9895-x. DOI
Matějíček J., Vilémová M., Nevrlá B., Kocmanová L., Veverka J., Halasová M., Hadraba H. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber. Surf. Coatings Technol. 2017;318:217–223. doi: 10.1016/j.surfcoat.2016.10.055. DOI
Wang Y., Xiong X., Xie L., Xu X., Min X., Zheng F. Sintering Behavior of Tungsten Heavy Alloy Products Made by Plasma Spray Forming. Mater. Trans. 2011;52:759–767. doi: 10.2320/matertrans.M2010391. DOI
Kovarik O., Čech J., Čapek J., Hajíček M., Klecka J., Siegl J. Mechanical properties of forged tungsten heavy alloys. Acta. Polytech. CTU Proc. 2020;27:149–154. doi: 10.14311/APP.2020.27.0149. DOI
Cizek J., Klecka J., Babka L., Musalek R., Hadraba H., Kondas J., Singh R., Pazderova M. Protective Mo and Fe Coatings by CS and RF-ICP for PbLi Coolant Environments in Generation IV Fission Reactors. J. Therm. Spray Technol. 2023 doi: 10.1007/s11666-022-01519-5. in press. DOI
Kovářík O., Čech J., Cizek J., Klečka J., Hajíček M. Mechanical and Fatigue Properties of Tungsten Heavy Alloy Prepared by RF-Plasma. In: Azarmi F., Chen X., Cizek J., Cojocaru C., Jodoin B., Koivuluoto H., Lau Y., Fernandez R., Ozdemir O., Jazi H.S., et al., editors. Proceedings of the Thermal Spray 2021: Proceedings from the International Thermal Spray Conference; Virtual. 24–28 May 2021; Materials Park, OH, USA: ASM International; 2021. DOI
Standard Test Method for Measurement of Fracture Toughness. ASTM International; West Conshohocken, PA, USA: 2019. DOI
Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International; West Conshohocken, PA, USA: 2015. p. 49. DOI
Cizek J., Kovarik O., Cupera J., Kondas J., Bajer T., Siska F., Janovska M., Seiner H. Measurement of mechanical and fatigue properties using unified, simple-geometry specimens: Cold spray additively manufactured pure metals. Surf. Coat. Technol. 2021;412:126929. doi: 10.1016/j.surfcoat.2021.126929. DOI
Kovarik O., Cizek J., Klecka J., Karlik M., Čapek J., Siegl J., Chraska T., Takayasu S. Mechanical properties and fatigue crack growth in tungsten deposited by rf-plasma. Surf. Coat. Technol. 2021;410:126930. doi: 10.1016/j.surfcoat.2021.126930. DOI
Golub V.P., Butseroga V.P., Pogrebnyak A.D. Study of the kinetics of fatigue cracks by the method of differential compliance. Int. Appl. Mech. 1995;31:1018–1025. doi: 10.1007/BF00847262. DOI
Herbert H. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Springer; Berlin/Heidelberg, Germany: 1910. Ueber den Zusammenhang der Biegungselastizität des Gußeisens mit seiner Zug- und Druckelastizität; pp. 39–81. DOI
Mayville R.A., Finnie I. Uniaxial stress-strain curves from a bending test. Exp. Mech. 1982;22:197–201. doi: 10.1007/BF02326357. DOI
Schwalbe K.H., Kalluri S., McGaw R.M., Neimitz A., Dean S.W. On the Beauty of Analytical Models for Fatigue Crack Propagation and Fracture—A Personal Historical Review. J. ASTM Int. 2010;7:102713. doi: 10.1520/JAI102713. DOI
Hartman A., Schijve J. The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys. Eng. Fract. Mech. 1970;1:615–631. doi: 10.1016/0013-7944(70)90003-2. DOI
Jones R., Kovarik O., Bagherifard S., Cizek J., Lang J. Damage tolerance assessment of am 304l and cold spray fabricated 316l steels and its implications for attritable aircraft. Eng. Fract. Mech. 2021;254:107916. doi: 10.1016/j.engfracmech.2021.107916. DOI
Jones R., Cizek J., Kovarik O., Lang J., Ang A., Michopoulos J.G. Characterising crack growth in scalmalloy. Procedia Struct. Integr. 2021;34:39–44. doi: 10.1016/j.prostr.2021.12.006. DOI
Jones R., Cizek J., Kovarik O., Ang A., Champagne V. Observations on comparable aluminium alloy crack growth curves: Additively manufactured Scalmalloy® as an alternative to AA5754 and AA6061-T6 alloys? Addit. Manuf. Lett. 2022;2:100026. doi: 10.1016/j.addlet.2022.100026. DOI
Jones R., Kovarik O., Cizek J., Ang A., Lang J. Crack growth in conventionally manufactured pure nickel, titanium and aluminum and the cold spray additively manufactured equivalents. Addit. Manuf. Lett. 2022;3:100043. doi: 10.1016/j.addlet.2022.100043. DOI
Schönherr J.A., Duarte L., Madia M., Zerbst U., Geilen M.B., Klein M., Oechsner M. Robust Determination of Fatigue Crack Propagation Thresholds from Crack Growth Data. Materials. 2022;15:4737. doi: 10.3390/ma15144737. PubMed DOI PMC
Coleman T.F., Li Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J. Optim. 1996;6:418–445. doi: 10.1137/0806023. DOI
Benz C., Sander M. Fatigue crack growth testing at negative stress ratios: Discussion on the comparability of testing results. Fatigue Fract. Eng. Mater. Struct. 2013;37:62–71. doi: 10.1111/ffe.12082. DOI
Roman I., Ono K. Model for fracture toughness alteration due to cyclic loading. Int. J. Fract. 1982;19:67–80. doi: 10.1007/BF00012493. DOI
Pillmeier S., Žák S., Pippan R., Hohenwarter A. Influence of cold rolling on the fatigue crack growth behavior of tungsten. Mater. Sci. Eng. A. 2021;805:140791. doi: 10.1016/j.msea.2021.140791. DOI
Roman I., Jinchuk D. Fatigue Crack Growth in a Sintered Tungsten Alloy. Fatigue Fract. Eng. Mater. Struct. 1982;5:71–76. doi: 10.1111/j.1460-2695.1982.tb01225.x. DOI