Fatigue Crack Growth Rate Description of RF-Plasma-Sprayed Refractory Metals and Alloys

. 2023 Feb 18 ; 16 (4) : . [epub] 20230218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36837343

Grantová podpora
19-143139S Czech Science Foundation

A fitting method capable of describing the fatigue crack growth rate (FCGR) data in all stages of crack propagation by a simple Forman-style analytical formula was developed. To demonstrate its robustness, this method was used to quantify the fracture behavior of RF-plasma-sprayed W, Mo, W-Mo composite, and four selected Ni-based tungsten heavy alloys (WHA). The fitted FCGR parameters categorized the studied materials into two distinct sets. W, Mo, and W-Mo composite deposits made from inherently brittle refractory metals that contained a range of defects inherent to plasma spray process represented the first class. This class was characterized by low fracture toughness and a relatively wide range of fatigue crack growth thresholds. The second class of materials was represented by WHA. Here, the deposit defects were suppressed by liquid state diffusion that formed a typical WHA structure consisting of a Ni-rich matrix and large spherical W reinforcement particles. The WHA generally showed higher fatigue crack growth thresholds, but differed in fracture toughness values based on the W particle concentrations. The obtained fracture mechanical data represent a reference dataset of plasma-sprayed refractory materials, and their classification into groups clearly demonstrates the capabilities of the developed method to capture a wide range of different types of FCGR behavior.

Zobrazit více v PubMed

Gludovatz B., Wurster S., Hoffmann A., Pippan R. Fracture toughness of polycrystalline tungsten alloys. Int. J. Refract. Met. Hard Mater. 2010;28:674–678. doi: 10.1016/j.ijrmhm.2010.04.007. DOI

Taguchi K., Nakadate K., Matsuo S., Tokunaga K., Kurishita H. Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum. J. Nucl. Mater. 2018;498:445–457. doi: 10.1016/j.jnucmat.2017.11.025. DOI

Tripathi J., Novakowski T., Joseph G., Linke J., Hassanein A. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation. J. Nucl. Mater. 2015;464:97–106. doi: 10.1016/j.jnucmat.2015.04.022. DOI

Neu R., Maier H., Balden M., Elgeti S., Gietl H., Greuner H., Herrmann A., Houben A., Rohde V., Sieglin B., et al. Investigations on tungsten heavy alloys for use as plasma facing material. Fusion Eng. Des. 2017;124:450–454. doi: 10.1016/j.fusengdes.2017.01.043. DOI

Cizek J., Kovarik O., Siska F., Bensch J., Cupera J., Matejkova M., Siegl J., Chraska T., Khor K.A. Increasing fatigue endurance of hydroxyapatite and rutile plasma sprayed biocomponents by controlling deposition in-flight properties. ACS Biomater. Sci. Eng. 2019;5:1703–1714. doi: 10.1021/acsbiomaterials.8b01545. PubMed DOI

Heuer S., Matějíček J., Vilémová M., Koller M., Illkova K., Veverka J., Weber T., Pintsuk G., Coenen J.W., Linsmeier C. Atmospheric plasma spraying of functionally graded steel/tungsten layers for the first wall of future fusion reactors. Surf. Coatings Technol. 2019;366:170–178. doi: 10.1016/j.surfcoat.2019.03.017. DOI

Klecka J., Cizek J., Matejicek J., Lukac F., Vala J. Thick functionally-graded W-316L composite coatings for nuclear fusion applications. Nucl. Mater. Energy. 2023;34:101373. doi: 10.1016/j.nme.2023.101373. DOI

Kovarik O., Haušild P., Siegl J., Chráska T., Matějíček J., Pala Z., Boulos M. The influence of substrate temperature on properties of aps and vps w coatings. Surf. Coat. Technol. 2015;268:7–14. doi: 10.1016/j.surfcoat.2014.07.041. DOI

Kovarik O., Materna A., Siegl J., Cizek J., Klecka J. Fatigue crack growth in plasma-sprayed refractory materials. J. Therm. Spray Technol. 2019;28:87–97. doi: 10.1007/s11666-018-0790-3. DOI

Matějíček J., Kavka T., Bertolissi G., Ctibor P., Vilémová M., Mušálek R., Nevrlá B. The role of spraying parameters and inert gas shrouding in hybrid water-argon plasma spraying of tungsten and copper for nuclear fusion applications. J. Therm. Spray Technol. 2013;22:744–755. doi: 10.1007/s11666-013-9895-x. DOI

Matějíček J., Vilémová M., Nevrlá B., Kocmanová L., Veverka J., Halasová M., Hadraba H. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber. Surf. Coatings Technol. 2017;318:217–223. doi: 10.1016/j.surfcoat.2016.10.055. DOI

Wang Y., Xiong X., Xie L., Xu X., Min X., Zheng F. Sintering Behavior of Tungsten Heavy Alloy Products Made by Plasma Spray Forming. Mater. Trans. 2011;52:759–767. doi: 10.2320/matertrans.M2010391. DOI

Kovarik O., Čech J., Čapek J., Hajíček M., Klecka J., Siegl J. Mechanical properties of forged tungsten heavy alloys. Acta. Polytech. CTU Proc. 2020;27:149–154. doi: 10.14311/APP.2020.27.0149. DOI

Cizek J., Klecka J., Babka L., Musalek R., Hadraba H., Kondas J., Singh R., Pazderova M. Protective Mo and Fe Coatings by CS and RF-ICP for PbLi Coolant Environments in Generation IV Fission Reactors. J. Therm. Spray Technol. 2023 doi: 10.1007/s11666-022-01519-5. in press. DOI

Kovářík O., Čech J., Cizek J., Klečka J., Hajíček M. Mechanical and Fatigue Properties of Tungsten Heavy Alloy Prepared by RF-Plasma. In: Azarmi F., Chen X., Cizek J., Cojocaru C., Jodoin B., Koivuluoto H., Lau Y., Fernandez R., Ozdemir O., Jazi H.S., et al., editors. Proceedings of the Thermal Spray 2021: Proceedings from the International Thermal Spray Conference; Virtual. 24–28 May 2021; Materials Park, OH, USA: ASM International; 2021. DOI

Standard Test Method for Measurement of Fracture Toughness. ASTM International; West Conshohocken, PA, USA: 2019. DOI

Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International; West Conshohocken, PA, USA: 2015. p. 49. DOI

Cizek J., Kovarik O., Cupera J., Kondas J., Bajer T., Siska F., Janovska M., Seiner H. Measurement of mechanical and fatigue properties using unified, simple-geometry specimens: Cold spray additively manufactured pure metals. Surf. Coat. Technol. 2021;412:126929. doi: 10.1016/j.surfcoat.2021.126929. DOI

Kovarik O., Cizek J., Klecka J., Karlik M., Čapek J., Siegl J., Chraska T., Takayasu S. Mechanical properties and fatigue crack growth in tungsten deposited by rf-plasma. Surf. Coat. Technol. 2021;410:126930. doi: 10.1016/j.surfcoat.2021.126930. DOI

Golub V.P., Butseroga V.P., Pogrebnyak A.D. Study of the kinetics of fatigue cracks by the method of differential compliance. Int. Appl. Mech. 1995;31:1018–1025. doi: 10.1007/BF00847262. DOI

Herbert H. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Springer; Berlin/Heidelberg, Germany: 1910. Ueber den Zusammenhang der Biegungselastizität des Gußeisens mit seiner Zug- und Druckelastizität; pp. 39–81. DOI

Mayville R.A., Finnie I. Uniaxial stress-strain curves from a bending test. Exp. Mech. 1982;22:197–201. doi: 10.1007/BF02326357. DOI

Schwalbe K.H., Kalluri S., McGaw R.M., Neimitz A., Dean S.W. On the Beauty of Analytical Models for Fatigue Crack Propagation and Fracture—A Personal Historical Review. J. ASTM Int. 2010;7:102713. doi: 10.1520/JAI102713. DOI

Hartman A., Schijve J. The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys. Eng. Fract. Mech. 1970;1:615–631. doi: 10.1016/0013-7944(70)90003-2. DOI

Jones R., Kovarik O., Bagherifard S., Cizek J., Lang J. Damage tolerance assessment of am 304l and cold spray fabricated 316l steels and its implications for attritable aircraft. Eng. Fract. Mech. 2021;254:107916. doi: 10.1016/j.engfracmech.2021.107916. DOI

Jones R., Cizek J., Kovarik O., Lang J., Ang A., Michopoulos J.G. Characterising crack growth in scalmalloy. Procedia Struct. Integr. 2021;34:39–44. doi: 10.1016/j.prostr.2021.12.006. DOI

Jones R., Cizek J., Kovarik O., Ang A., Champagne V. Observations on comparable aluminium alloy crack growth curves: Additively manufactured Scalmalloy® as an alternative to AA5754 and AA6061-T6 alloys? Addit. Manuf. Lett. 2022;2:100026. doi: 10.1016/j.addlet.2022.100026. DOI

Jones R., Kovarik O., Cizek J., Ang A., Lang J. Crack growth in conventionally manufactured pure nickel, titanium and aluminum and the cold spray additively manufactured equivalents. Addit. Manuf. Lett. 2022;3:100043. doi: 10.1016/j.addlet.2022.100043. DOI

Schönherr J.A., Duarte L., Madia M., Zerbst U., Geilen M.B., Klein M., Oechsner M. Robust Determination of Fatigue Crack Propagation Thresholds from Crack Growth Data. Materials. 2022;15:4737. doi: 10.3390/ma15144737. PubMed DOI PMC

Coleman T.F., Li Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J. Optim. 1996;6:418–445. doi: 10.1137/0806023. DOI

Benz C., Sander M. Fatigue crack growth testing at negative stress ratios: Discussion on the comparability of testing results. Fatigue Fract. Eng. Mater. Struct. 2013;37:62–71. doi: 10.1111/ffe.12082. DOI

Roman I., Ono K. Model for fracture toughness alteration due to cyclic loading. Int. J. Fract. 1982;19:67–80. doi: 10.1007/BF00012493. DOI

Pillmeier S., Žák S., Pippan R., Hohenwarter A. Influence of cold rolling on the fatigue crack growth behavior of tungsten. Mater. Sci. Eng. A. 2021;805:140791. doi: 10.1016/j.msea.2021.140791. DOI

Roman I., Jinchuk D. Fatigue Crack Growth in a Sintered Tungsten Alloy. Fatigue Fract. Eng. Mater. Struct. 1982;5:71–76. doi: 10.1111/j.1460-2695.1982.tb01225.x. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...