First Real-Time Imaging of Acute Effects of Arteriovenous Fistula on Regional Distribution of Pulmonary Perfusion in a Novel Porcine Model

. 2025 Mar 21 ; 74 (1) : 49-57.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40116550

The effects of a large arteriovenous fistula (AVF) on pulmonary perfusion remains to be elucidated. We aimed to study, for the first time, the real-time acute effects of a large AVF on regional distribution of pulmonary perfusion in a novel porcine model. Ten healthy swine under general anesthesia were studied. AVF was created by the connection of femoral artery and femoral vein using high-diameter perfusion cannulas. The AVF was closed and after 30 min of stabilization the first values were recorded. The fistula was then opened, and new data were collected after reaching stable state. Continuous hemodynamic monitoring was performed throughout the protocol. The following functional images were analyzed by electrical impedance tomography (EIT): perfusion and ventilation distributions. We found an increased cardiac output and right ventricular work, which was strongly correlated to an increased pulmonary artery mean pressure (r=0.878, P=0.001). The ventral/dorsal ratio of pulmonary perfusion decreased from 1.9+/-1.0 to 1.5+/-0.7 (P=0.025). The percentage of total pulmonary blood flow through the dorsal lung region increased from 38.6+/-11.7 to 42.2+/-10.4 (P=0.016). In conclusion, we have used EIT for the first time for studying the acute effects of a large AVF on regional distribution of pulmonary perfusion in a novel porcine model. In this new experimental model of hyperkinetic circulation caused by AVF, we documented an increased percentage of total pulmonary blood flow through the dorsal lung region and a more homogeneous perfusion distribution. Key words Arteriovenous fistula, Hyperkinetic circulation, Tissue perfusion, Animal model, Pulmonary blood flow.

Zobrazit více v PubMed

Malik J, Tuka V, Tesar V. Local hemodynamics of the vascular access for hemodialysis. Kidney Blood Press Res. 2009;32:59–66. doi: 10.1159/000205522. PubMed DOI

Fila B, Roca-Tey R, Malik J, Malovrh M, Pirozzi N, Kusztal M, Gallieni M, Jemcov T. Quality assessment of vascular access procedures for hemodialysis: A position paper of the Vascular Access Society based on the analysis of existing guidelines. J Vasc Access. 2020;21:148–153. doi: 10.1177/1129729819848624. PubMed DOI

Guyton AC, Sagawa K. Compensations of cardiac output and other circulatory functions in areflex dogs with large A-V fistulas. Am J Physiol. 1961;200:1157–1163. doi: 10.1152/ajplegacy.1961.200.6.1157. PubMed DOI

Laranjinha I, Matias P, Oliveira R, Casqueiro A, Bento MT, Carvalho AP, Adragao T, et al. The impact of functioning hemodialysis arteriovenous accesses on renal graft perfusion: Results of a pilot study. J Vasc Access. 2019;20:482–487. doi: 10.1177/1129729818817248. PubMed DOI

Kovarova L, Valerianova A, Michna M, Malik J. Short-term manual compression of hemodialysis fistula leads to a rise in cerebral oxygenation. J Vasc Access. 2021;22:90–93. doi: 10.1177/1129729820924561. PubMed DOI

Gaudino M, Serricchio M, Luciani N, Giungi S, Salica A, Pola R, Pola P, Luciani G, Possati G. Risks of using internal thoracic artery grafts in patients in chronic hemodialysis via upper extremity arteriovenous fistula. Circulation. 2003;107:2653–2655. doi: 10.1161/01.CIR.0000074777.87467.73. PubMed DOI

Crowley SD, Butterly DW, Peter RH, Schwab SJ. Coronary steal from a left internal mammary artery coronary bypass graft by a left upper extremity arteriovenous hemodialysis fistula. Am J Kidney Dis. 2002;40:852–855. doi: 10.1053/ajkd.2002.35701. PubMed DOI

Feldman L, Tkacheva I, Efrati S, Rabin I, Beberashvili I, Gorelik O, Averbukh Z, Shani M. Effect of arteriovenous hemodialysis shunt location on cardiac events in patients having coronary artery bypass graft using an internal thoracic artery. Ther Apher Dial. 2014;18:450–454. doi: 10.1111/1744-9987.12158. PubMed DOI

Valerianova A, Mlcek M, Grus T, Malik J, Kittnar O. New Porcine Model of Arteriovenous Fistula Documents Increased Coronary Blood Flow at the Cost of Brain Perfusion. Front Physiol. 2022;13:881658. doi: 10.3389/fphys.2022.881658. PubMed DOI PMC

Popkova M, Kuriscak E, Hala P, Janak D, Tejkl L, Belohlavek J, Ostadal P, et al. Increasing Veno-Arterial Extracorporeal Membrane Oxygenation Flow Reduces Electrical Impedance of the Lung Regions in Porcine Acute Heart Failure. Physiol Res. 2020;69:609–620. doi: 10.33549/physiolres.934429. PubMed DOI PMC

Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004;169:791–800. doi: 10.1164/rccm.200301-133OC. PubMed DOI

Bachmann MC, Morais C, Bugedo G, Bruhn A, Morales A, Borges JB, Costa E, Retamal J. Electrical impedance tomography in acute respiratory distress syndrome. Crit Care. 2018;22:263. doi: 10.1186/s13054-018-2195-6. PubMed DOI PMC

Reinius H, Borges JB, Engstrom J, Ahlgren O, Lennmyr F, Larsson A, Freden F. Optimal PEEP during one-lung ventilation with capnothorax: An experimental study. Acta Anaesthesiol Scand. 2019;63:222–231. doi: 10.1111/aas.13247. PubMed DOI

Reinius H, Borges JB, Freden F, Jideus L, Camargo ED, Amato MB, Hedenstierna G, Larsson A, Lennmyr F. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–368. doi: 10.1111/aas.12455. PubMed DOI

Borges JB, Cronin JN, Crockett DC, Hedenstierna G, Larsson A, Formenti F. Real-time effects of PEEP and tidal volume on regional ventilation and perfusion in experimental lung injury. Intensive Care Med Exp. 2020;8:10. doi: 10.1186/s40635-020-0298-2. PubMed DOI PMC

Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol (1985) 2012;112:225–236. doi: 10.1152/japplphysiol.01090.2010. PubMed DOI

Borges JB, Alcala GC, Mlcek M. A Step Forward toward a Bedside and Timely Monitoring of Regional V./Q. Matching. Am J Respir Crit Care Med. 2020;202:1342–1344. doi: 10.1164/rccm.202007-2896ED. PubMed DOI PMC

Mlcek M, Borges JB, Otahal M, Alcala GC, Hladik D, Kuriscak E, Tejkl L, Amato M, Kittnar O. Real-time effects of lateral positioning on regional ventilation and perfusion in an experimental model of acute respiratory distress syndrome. Front Physiol. 2023;14:1113568. doi: 10.3389/fphys.2023.1113568. PubMed DOI PMC

Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Quintel M, Hellige G. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging. 2002;21:646–652. doi: 10.1109/TMI.2002.800585. PubMed DOI PMC

Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6:731–744. doi: 10.1152/jappl.1954.6.12.731. PubMed DOI

Thompson HK, Jr, Starmer CF, Whalen RE, McIntosh HD. Indicator Transit Time Considered as a Gamma Variate. Circ Res. 1964;14:502–515. doi: 10.1161/01.RES.14.6.502. PubMed DOI

Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998;42:721–726. doi: 10.1111/j.1399-6576.1998.tb05308.x. PubMed DOI

Karamlou T, Giraud GD, McKeogh D, Jonker SS, Shen I, Ungerleider RM, Thornburg KL. Right ventricular remodeling in response to volume overload in fetal sheep. Am J Physiol Heart Circ Physiol. 2019;316:H985–H991. doi: 10.1152/ajpheart.00439.2018. PubMed DOI PMC

Dollery CT, West JB, Wilcken DE, Hugh-Jones P. A comparison of the pulmonary blood flow between left and right lungs in normal subjects and patients with congenital heart disease. Circulation. 1961;24:617–625. doi: 10.1161/01.CIR.24.3.617. PubMed DOI

West JB. Regional differences in the lung. Chest. 1978;74:426–437. doi: 10.1016/S0012-3692(15)37392-X. PubMed DOI

West JB, Dollery CT, Naimark A. Distribution of Blood Flow in Isolated Lung; Relation to Vascular and Alveolar Pressures. J Appl Physiol. 1964;19:713–724. doi: 10.1152/jappl.1964.19.4.713. PubMed DOI

Damgaard-Pedersen K, Qvist T. Pediatric pulmonary CT-scanning. Anaesthesia-induced changes. Pediatr Radiol. 1980;9:145–148. doi: 10.1007/BF01464308. PubMed DOI

Bendixen HH, Hedley-Whyte J, Laver MB. Impaired Oxygenation in Surgical Patients during General Anesthesia with Controlled Ventilation. A Concept of Atelectasis. N Engl J Med. 1963;269:991–996. doi: 10.1056/NEJM196311072691901. PubMed DOI

Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Svensson L, Tokics L. Pulmonary densities during anesthesia with muscular relaxation--a proposal of atelectasis. Anesthesiology. 1985;62:422–428. doi: 10.1097/00000542-198504000-00009. PubMed DOI

Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B. CT-assessment of dependent lung densities in man during general anaesthesia. Acta Radiol. 1995;36:626–632. doi: 10.1177/028418519503600464. PubMed DOI

Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 2005;98:390–403. doi: 10.1152/japplphysiol.00733.2004. PubMed DOI

Miller FL, Chen L, Malmkvist G, Marshall C, Marshall BE. Mechanical factors do not influence blood flow distribution in atelectasis. Anesthesiology. 1989;70:481–488. doi: 10.1097/00000542-198903000-00019. PubMed DOI

Benumof JL. Mechanism of decreased blood flow to atelectatic lung. J Appl Physiol Respir Environ Exerc Physiol. 1979;46:1047–1048. doi: 10.1152/jappl.1979.46.6.1047. PubMed DOI

Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care. 2009;15:18–24. doi: 10.1097/MCC.0b013e3283220e8c. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...