Real-time effects of lateral positioning on regional ventilation and perfusion in an experimental model of acute respiratory distress syndrome

. 2023 ; 14 () : 1113568. [epub] 20230320

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37020459

Low-volume lung injury encompasses local concentration of stresses in the vicinity of collapsed regions in heterogeneously ventilated lungs. We aimed to study the effects on ventilation and perfusion distributions of a sequential lateral positioning (30°) strategy using electrical impedance tomography imaging in a porcine experimental model of early acute respiratory distress syndrome (ARDS). We hypothesized that such strategy, including a real-time individualization of positive end-expiratory pressure (PEEP) whenever in lateral positioning, would provide attenuation of collapse in the dependent lung regions. A two-hit injury acute respiratory distress syndrome experimental model was established by lung lavages followed by injurious mechanical ventilation. Then, all animals were studied in five body positions in a sequential order, 15 min each: Supine 1; Lateral Left; Supine 2; Lateral Right; Supine 3. The following functional images were analyzed by electrical impedance tomography: ventilation distributions and regional lung volumes, and perfusion distributions. The induction of the acute respiratory distress syndrome model resulted in a marked fall in oxygenation along with low regional ventilation and compliance of the dorsal half of the lung (gravitational-dependent in supine position). Both the regional ventilation and compliance of the dorsal half of the lung greatly increased along of the sequential lateral positioning strategy, and maximally at its end. In addition, a corresponding improvement of oxygenation occurred. In conclusion, our sequential lateral positioning strategy, with sufficient positive end-expiratory pressure to prevent collapse of the dependent lung units during lateral positioning, provided a relevant diminution of collapse in the dorsal lung in a porcine experimental model of early acute respiratory distress syndrome.

Erratum v

PubMed

Zobrazit více v PubMed

Acosta C. M., Volpicelli G., Rudzik N., Venturin N., Gerez S., Ricci L., et al. (2020). Feasibility of postural lung recruitment maneuver in children: A randomized, controlled study. Ultrasound J. 12 (1), 34. 10.1186/s13089-020-00181-8 PubMed DOI PMC

Agostoni E., D'Angelo E., Bonanni M. V. (1970). The effect of the abdomen on the vertical gradient of pleural surface pressure. Respir. Physiol. 8 (3), 332–346. 10.1016/0034-5687(70)90040-x PubMed DOI

Bachmann M. C., Morais C., Bugedo G., Bruhn A., Morales A., Borges J. B., et al. (2018). Electrical impedance tomography in acute respiratory distress syndrome. Crit. Care 22 (1), 263. 10.1186/s13054-018-2195-6 PubMed DOI PMC

Ballard-Croft C., Wang D., Sumpter L. R., Zhou X., Zwischenberger J. B. (2012). Large-animal models of acute respiratory distress syndrome. Ann. Thorac. Surg. 93 (4), 1331–1339. 10.1016/j.athoracsur.2011.06.107 PubMed DOI

Bastia L., Engelberts D., Osada K., Katira B. H., Damiani L. F., Yoshida T., et al. (2021). Role of positive end-expiratory pressure and regional transpulmonary pressure in asymmetrical lung injury. Am. J. Respir. Crit. Care Med. 203 (8), 969–976. 10.1164/rccm.202005-1556OC PubMed DOI

Bellani G., Laffey J. G., Pham T., Fan E., Brochard L., Esteban A., et al. (2016). Epidemiology, patterns of Care, and mortality for patients with acute respiratory distress syndrome in intensive Care units in 50 countries. JAMA 315 (8), 788–800. 10.1001/jama.2016.0291 PubMed DOI

Borges J. B., Alcala G. C., Mlcek M. (2020a). A step forward toward a bedside and timely monitoring of regional [formula: See text]/[formula: See text] matching. Am. J. Respir. Crit. Care Med. 202 (10), 1342–1344. 10.1164/rccm.202007-2896ED PubMed DOI PMC

Borges J. B., Costa E. L., Bergquist M., Lucchetta L., Widstrom C., Maripuu E., et al. (2015). Lung inflammation persists after 27 hours of protective Acute Respiratory Distress Syndrome Network Strategy and is concentrated in the nondependent lung. Crit. Care Med. 43 (5), e123–e132. 10.1097/CCM.0000000000000926 PubMed DOI

Borges J. B., Costa E. L., Suarez-Sipmann F., Widstrom C., Larsson A., Amato M., et al. (2014). Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury. Crit. Care Med. 42 (4), e279–e287. 10.1097/CCM.0000000000000161 PubMed DOI

Borges J. B., Cronin J. N., Crockett D. C., Hedenstierna G., Larsson A., Formenti F. (2020b). Real-time effects of PEEP and tidal volume on regional ventilation and perfusion in experimental lung injury. Intensive Care Med. Exp. 8 (1), 10. 10.1186/s40635-020-0298-2 PubMed DOI PMC

Borges J. B., Okamoto V. N., Matos G. F., Caramez M. P., Arantes P. R., Barros F., et al. (2006). Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 174 (3), 268–278. 10.1164/rccm.200506-976OC PubMed DOI

Borges J. B., Suarez-Sipmann F., Bohm S. H., Tusman G., Melo A., Maripuu E., et al. (2012). Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J. Appl. Physiol. 112 (1), 225–236. 10.1152/japplphysiol.01090.2010 PubMed DOI

Bryan A. C., Milic-Emili J., Pengelly D. (1966). Effect of gravity on the distribution of pulmonary ventilation. J. Appl. Physiol. 21 (3), 778–784. 10.1152/jappl.1966.21.3.778 PubMed DOI

Chen L., Del Sorbo L., Grieco D. L., Junhasavasdikul D., Rittayamai N., Soliman I., et al. (2020). Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am. J. Respir. Crit. Care Med. 201 (2), 178–187. 10.1164/rccm.201902-0334OC PubMed DOI

Cressoni M., Chiumello D., Chiurazzi C., Brioni M., Algieri I., Gotti M., et al. (2016). Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. Eur. Respir. J. 47 (1), 233–242. 10.1183/13993003.00885-2015 PubMed DOI

Cressoni M., Chiurazzi C., Gotti M., Amini M., Brioni M., Algieri I., et al. (2015). Lung inhomogeneities and time course of ventilator-induced mechanical injuries. Anesthesiology 123 (3), 618–627. 10.1097/ALN.0000000000000727 PubMed DOI

D'Angelo E., Bonanni M. V., Michelini S., Agostoni E. (1970). Topography of the pleural pressure in rabbits and dogs. Respir. Physiol. 8 (2), 204–229. 10.1016/0034-5687(70)90016-2 PubMed DOI

Dakin J., Jones A. T., Hansell D. M., Hoffman E. A., Evans T. W. (2011). Changes in lung composition and regional perfusion and tissue distribution in patients with ARDS. Respirology 16 (8), 1265–1272. 10.1111/j.1440-1843.2011.02048.x PubMed DOI PMC

Dantzker D. R., Brook C. J., Dehart P., Lynch J. P., Weg J. G. (1979). Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 120 (5), 1039–1052. 10.1164/arrd.1979.120.5.1039 PubMed DOI

de Matos G. F., Stanzani F., Passos R. H., Fontana M. F., Albaladejo R., Caserta R. E., et al. (2012). How large is the lung recruitability in early acute respiratory distress syndrome: A prospective case series of patients monitored by computed tomography. Crit. Care 16 (1), R4. 10.1186/cc10602 PubMed DOI PMC

Dreyfuss D., Saumon G. (1998). Ventilator-induced lung injury: Lessons from experimental studies. Am. J. Respir. Crit. Care Med. 157 (1), 294–323. 10.1164/ajrccm.157.1.9604014 PubMed DOI

Frerichs I., Hahn G., Golisch W., Kurpitz M., Burchardi H., Hellige G. (1998). Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol. Scand. 42 (6), 721–726. 10.1111/j.1399-6576.1998.tb05308.x PubMed DOI

Frerichs I., Hinz J., Herrmann P., Weisser G., Hahn G., Quintel M., et al. (2002). Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans. Med. Imaging 21 (6), 646–652. 10.1109/TMI.2002.800585 PubMed DOI PMC

Huber G. L., Edmunds L. H., Jr., Finley T. N. (1966). Acute effect of saline lung washing on pulmonary mechanics and morphology. Surg. Forum 17, 113–114. PubMed

Katira B. H., Osada K., Engelberts D., Bastia L., Damiani L. F., Li X., et al. (2021). Positive end-expiratory pressure, pleural pressure, and regional compliance during pronation: An experimental study. Am. J. Respir. Crit. Care Med. 203 (10), 1266–1274. 10.1164/rccm.202007-2957OC PubMed DOI

Kloot T. E., Blanch L., Melynne Youngblood A., Weinert C., Adams A. B., Marini J. J., et al. (2000). Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am. J. Respir. Crit. Care Med. 161 (5), 1485–1494. 10.1164/ajrccm.161.5.9809014 PubMed DOI

Meier P., Zierler K. L. (1954). On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6 (12), 731–744. 10.1152/jappl.1954.6.12.731 PubMed DOI

Muscedere J. G., Mullen J. B., Gan K., Slutsky A. S. (1994). Tidal ventilation at low airway pressures can augment lung injury. Am. J. Respir. Crit. Care Med. 149 (5), 1327–1334. 10.1164/ajrccm.149.5.8173774 PubMed DOI

Otto C. M., Markstaller K., Kajikawa O., Karmrodt J., Syring R. S., Pfeiffer B., et al. (2008). Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion. J. Appl. Physiol. 104 (5), 1485–1494. 10.1152/japplphysiol.01089.2007 PubMed DOI PMC

Phua J., Badia J. R., Adhikari N. K., Friedrich J. O., Fowler R. A., Singh J. M., et al. (2009). Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review. Am. J. Respir. Crit. Care Med. 179 (3), 220–227. 10.1164/rccm.200805-722OC PubMed DOI

Pistolesi M., Miniati M., Di Ricco G., Marini C., Giuntini C. (1986). Perfusion lung imaging in the adult respiratory distress syndrome. J. Thorac. Imaging 1 (3), 11–24. 10.1097/00005382-198607000-00004 PubMed DOI

Popkova M., Kuriscak E., Hala P., Janak D., Tejkl L., Belohlavek J., et al. (2020). Increasing veno-arterial extracorporeal membrane oxygenation flow reduces electrical impedance of the lung regions in porcine acute heart failure. Physiol. Res. 69 (4), 609–620. 10.33549/physiolres.934429 PubMed DOI PMC

Reinius H., Borges J. B., Engstrom J., Ahlgren O., Lennmyr F., Larsson A., et al. (2019). Optimal PEEP during one-lung ventilation with capnothorax: An experimental study. Acta Anaesthesiol. Scand. 63 (2), 222–231. 10.1111/aas.13247 PubMed DOI

Reinius H., Borges J. B., Freden F., Jideus L., Camargo E. D., Amato M. B., et al. (2015). Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol. Scand. 59 (3), 354–368. 10.1111/aas.12455 PubMed DOI

Roldan R., Rodriguez S., Barriga F., Tucci M., Victor M., Alcala G., et al. (2022). Sequential lateral positioning as a new lung recruitment maneuver: An exploratory study in early mechanically ventilated covid-19 ARDS patients. Ann. Intensive Care 12 (1), 13. 10.1186/s13613-022-00988-9 PubMed DOI PMC

Rubenfeld G. D., Caldwell E., Peabody E., Weaver J., Martin D. P., Neff M., et al. (2005). Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353 (16), 1685–1693. 10.1056/NEJMoa050333 PubMed DOI

Russ M., Boerger E., von Platen P., Francis R. C. E., Taher M., Boemke W., et al. (2021). Surfactant depletion combined with injurious ventilation results in a reproducible model of the acute respiratory distress syndrome (ARDS). J. Vis. Exp. 170. 10.3791/62327 PubMed DOI

Schuster D. P., Haller J. (1990). Regional pulmonary blood flow during acute pulmonary edema: A PET study. J. Appl. Physiol. 69 (1), 353–361. 10.1152/jappl.1990.69.1.353 PubMed DOI

Schuster D. P., Marklin G. F. (1986). The effect of regional lung injury or alveolar hypoxia on pulmonary blood flow and lung water measured by positron emission tomography. Am. Rev. Respir. Dis. 133 (6), 1037–1042. 10.1164/arrd.1986.133.6.1037 PubMed DOI

Slutsky A. S., Ranieri V. M. (2013). Ventilator-induced lung injury. N. Engl. J. Med. 369 (22), 2126–2136. 10.1056/NEJMra1208707 PubMed DOI

Staudinger T., Bojic A., Holzinger U., Meyer B., Rohwer M., Mallner F., et al. (2010). Continuous lateral rotation therapy to prevent ventilator-associated pneumonia. Crit. Care Med. 38 (2), 486–490. 10.1097/CCM.0b013e3181bc8218 PubMed DOI

Thompson H. K., Jr., Starmer C. F., Whalen R. E., McIntosh H. D. (1964). Indicator transit time considered as a gamma variate. Circ. Res. 14, 502–515. 10.1161/01.res.14.6.502 PubMed DOI

Victorino J. A., Borges J. B., Okamoto V. N., Matos G. F., Tucci M. R., Caramez M. P., et al. (2004). Imbalances in regional lung ventilation: A validation study on electrical impedance tomography. Am. J. Respir. Crit. Care Med. 169 (7), 791–800. 10.1164/rccm.200301-133OC PubMed DOI

West J. B., Dollery C. T., Naimark A. (1964). Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713–724. 10.1152/jappl.1964.19.4.713 PubMed DOI

Yoshida T., Torsani V., Gomes S., De Santis R. R., Beraldo M. A., Costa E. L., et al. (2013). Spontaneous effort causes occult pendelluft during mechanical ventilation. Am. J. Respir. Crit. Care Med. 188 (12), 1420–1427. 10.1164/rccm.201303-0539OC PubMed DOI

Zhao Z., Zhang J. S., Chen Y. T., Chang H. T., Hsu Y. L., Frerichs I., et al. (2021). The use of electrical impedance tomography for individualized ventilation strategy in COVID-19: A case report. BMC Pulm. Med. 21 (1), 38. 10.1186/s12890-021-01411-y PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...