Digital Twin Model of Electric Drives Empowered by EKF
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NA
European Union Research, Development and Education Program Fund
SGS-2021-021
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36850601
PubMed Central
PMC9961613
DOI
10.3390/s23042006
PII: s23042006
Knihovny.cz E-resources
- Keywords
- Extended Kalman Filter (EKF), Metaverse, digital twin, induction motor (IM), sensorless control, state estimation,
- Publication type
- Journal Article MeSH
Digital twins, a product of new-generation information technology development, allows the physical world to be transformed into a virtual digital space and provide technical support for creating a Metaverse. A key factor in the success of Industry 4.0, the fourth industrial revolution, is the integration of cyber-physical systems into machinery to enable connectivity. The digital twin is a promising solution for addressing the challenges of digitally implementing models and smart manufacturing, as it has been successfully applied for many different infrastructures. Using a digital twin for future electric drive applications can help analyze the interaction and effects between the fast-switching inverter and the electric machine, as well as the system's overall behavior. In this respect, this paper proposes using an Extended Kalman Filter (EKF) digital twin model to accurately estimate the states of a speed sensorless rotor field-oriented controlled induction motor (IM) drive. The accuracy of the state estimation using the EKF depends heavily on the input voltages, which are typically supplied by the inverter. In contrast to previous research that used a low-precision ideal inverter model, this study employs a high-performance EKF observer based on a practical model of the inverter that takes into account the dead-time effects and voltage drops of switching devices. To demonstrate the effectiveness of the EKF digital twinning on the IM drive system, simulations were run using the MATLAB/Simulink software (R2022a), and results are compared with a set of actual data coming from a 4 kW three-phase IM as a physical entity.
Faculty of Electrical Engineering University of West Bohemia 30100 Pilsen Czech Republic
Research and Innovation Center for Electrical Engineering 30100 Pilsen Czech Republic
See more in PubMed
Segovia M., Garcia-Alfaro J. Design, modeling and implementation of digital twins. Sensors. 2022;22:5396. doi: 10.3390/s22145396. PubMed DOI PMC
Jones D., Snider C., Nassehi A., Yon J., Hicks B. characterizing the digital twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020;29:3652. doi: 10.1016/j.cirpj.2020.02.002. DOI
Lehmann J., Schorz S., Rache A., Haubermann T., Radle M., Reichwald J. Establishing reliable research data management by integrating measurement devices utilizing intelligent digital twins. Sensors. 2023;23:468. doi: 10.3390/s23010468. PubMed DOI PMC
Fuller A., Fan Z., Day C., Barlow C. Digital twin: Enabling technologies, challenges and open research. IEEE Access. 2020;8:108952–108971. doi: 10.1109/ACCESS.2020.2998358. DOI
Neghab H.K., Jamshidi M., Neghab H.K. Digital twin of a magnetic medical microrobot with stochastic model predictive controller boosted by machine learning in cyber-physical healthcare systems. Information. 2022;13:321. doi: 10.3390/info13070321. DOI
Yang B., Yang S., Lv Z., Wang F., Olofssn T., Reichwald J. Application of digital twins and metaverse in the field of fluid machinery pumps and fans: A review. Sensors. 2022;22:9294. doi: 10.3390/s22239294. PubMed DOI PMC
Hu F. Digital twin-driven reconfigurable fixturing optimization for trimming operation of aircraft skins. Aerospace. 2022;9:154. doi: 10.3390/aerospace9030154. DOI
Zaky M.S., Metwaly M.K., Azazi H.Z., Deraz H.A. A new adaptive SMO for speed estimation of sensorless induction motor drives at zero and very low frequencies. IEEE Trans. Ind. Electron. 2018;65:6901–6911. doi: 10.1109/TIE.2018.2793206. DOI
Salim R., Mansouri A., Bendiabdellah A., Chekroun S., Touam M. Sensorless passivity based control for induction motor via an adaptive observer. ISA Trans. 2019;84:118–127. doi: 10.1016/j.isatra.2018.10.002. PubMed DOI
Ebadpour M., Sharifian M.B.B., Feyzi M.R. A cost-effective position sensorless control for four-switch three-phase brushless DC motor drives using single current sensor. Int. Rev. Autom. Control. 2011;4:386–393.
Jamshidi M.B., Roshani S., Talla J., Sharifi-Atashgah M.S., Roshani S., Peroutka Z. Cloud-based machine learning techniques implemented by microsoft azure for designing power amplifiers; Proceedings of the IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); New York, NY, USA. 1–4 December 2021; DOI
Zuo Y., Ge X., Zheng Y., Chen Y., Wang H., Woldegiorgis A.T. An adaptive active disturbance rejection control strategy for speed-sensorless induction motor drives. IEEE Trans. Transp. Electrif. 2022;8:3336–3348. doi: 10.1109/TTE.2022.3148412. DOI
Ebadpour M., Sharifian M.B.B., Feyzi M.R. 2011 2nd Power Electronics, Drive Systems and Technologies Conference. IEEE; Piscatvie, NJ, USA: 2011. A simple position sensorless control strategy for four-switch three-phase brushless DC motor drives using single current sensor; pp. 235–240. DOI
Talla J., Leu V.Q., Šmídl V., Peroutka Z. Adaptive speed control of induction motor drive with inaccurate model. IEEE Trans. Ind. Electron. 2018;65:8532–8542. doi: 10.1109/TIE.2018.2811362. DOI
Bahloul M., Chrifi-Alaoui L., Drid S., Souissi M., Chaabane M. Robust sensorless vector control of an induction machine using multiobjective adaptive fuzzy Luenberger observer. ISA Trans. 2018;74:144–154. doi: 10.1016/j.isatra.2018.01.019. PubMed DOI
Yin Z., Gao F., Zhang Y., Du C., Li G., Sun X. A review of nonlinear Kalman filter applying to sensorless control for AC motor drives. CES Trans. Elec. Machines Syst. 2019;3:351–362. doi: 10.30941/CESTEMS.2019.00047. DOI
Talla J., Peroutka Z., Blahnik V., Streit L. 2015 International Conference on Applied Electronics (AE) IEEE; Piscatvie, NJ, USA: 2015. Rotor and stator resistance estimation of induction motor based on augmented EKF; pp. 253–258.
Yildiz R., Barut M., Zerdali E. A comprehensive comparison of extended and unscented kalman filters for speed-sensorless control applications of induction motors. IEEE Trans. Ind. Inform. 2020;16:6423–6432. doi: 10.1109/TII.2020.2964876. DOI
Zarei J., Kowsari E., Razavi-Far R. Induction motors fault detection using square-root transformed cubature quadrature kalman filter. IEEE Trans. Energy Conv. 2019;34:870–877. doi: 10.1109/TEC.2018.2877781. DOI
Yousefi-Darani A., Paquet-Durand O., Hitzmann B. The kalman filter for the supervision of cultivation processes. Adv. Biochem. Eng. Biotechnol. 2021;177:95–125. doi: 10.1007/10_2020_145. PubMed DOI
Zhang J., Lee J. A review on prognostics and health monitoring of li-ion battery. J Power Source. 2011;196:6007–6014. doi: 10.1016/j.jpowsour.2011.03.101. DOI
Wang J., Moreira J., Cao Y., Gopaluni B. 2022 American Control Conference (ACC) IEEE; Piscatvie, NJ, USA: 2022. Time-variant digital twin modeling through the kalman-generalized sparse identification of nonlinear dynamics; pp. 5217–5222. DOI
Kurvinen E., Kutvonen A., Ukko J., Khadim Q., Hagh Y.S., Jaiswal S., Neisi N., Zhidchenko V., Kortelainen J., Timperi M., et al. Physics-based digital twins merging with machines: Cases of mobile log crane and rotating machine. IEEE Access. 2022;10:45962–45978. doi: 10.1109/ACCESS.2022.3170430. DOI
Lim J.-W., Bu H., Cho Y. Novel dead-time compensation strategy for wide current range in a three- phase inverter. Electronics. 2019;8:92. doi: 10.3390/electronics8010092. DOI
Özkurt G., Zerdali E. Design and implementation of hybrid adaptive extended kalman filter for state estimation of induction motor. IEEE Trans. Instrum. Meas. 2022;71:1–12. doi: 10.1109/TIM.2022.3144729. DOI
Ebadpour M., Sharifian M.B.B., Babaei E. Modeling and synchronized control of dual parallel brushless direct current motors with single inverter. Comput. Electr. Eng. 2018;70:229–242. doi: 10.1016/j.compeleceng.2017.08.016. DOI
Wang X., Yang J., Han K., Wang W., Wang F.-Y. Metaverses and demetaverses: From digital twins in CPS to parallel intelligence in CPSS. IEEE Intell. Syst. 2022;37:97–102. doi: 10.1109/MIS.2022.3196592. DOI
Daneshfar F., Jamshidi M. An Octonion-Based Nonlinear Echo State Network for Speech Emotion Recognition in Metaverse. [(accessed on 8 October 2022)]. Available online: https://ssrn.com/abstract=4242011. PubMed
Shafiei A., Jamshidi M., Khani F., Talla J., Peroutka Z., Gantassi R., Baz M., Cheikhrouhou O., Hamam H. A hybrid technique based on a genetic algorithm for fuzzy multiobjective problems in 5G, internet of things, and mobile edge computing. Math. Pronlems Eng. 2021;2021:1–14. doi: 10.1155/2021/9194578. DOI
Chao Z., Zhou G., Xu Q., Zhibo W., Han C., Wang Z. A digital twin defined autonomous milling process towards the online optimal control of milling deformation for thin-walled parts. Int. J. Adv. Manuf. Technol. 2022;124:2847–2861. doi: 10.1007/s00170-022-10667-5. DOI
Sepasgozar S.M.E. Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment. Buildings. 2021;11:151. doi: 10.3390/buildings11040151. DOI
Hu F. Mutual information-enhanced digital twin promotes vision-guided robotic grasping. Adv. Eng. Inform. 2022;52:101562. doi: 10.1016/j.aei.2022.101562. DOI
Khalaj O., Jamshidi M., Hassas P., Hosseininezhad M., Masek B., Stadler C., Svoboda J. Metaverses and AI twinning of 42SiCr steel alloys. Mathematics. 2023;11:4. doi: 10.3390/math11010004. DOI
Han Y., Niyato D., Leung C., Kim D.I., Zhu K., Feng S., Shen X., Miao C. A dynamic hierarchical framework for IoT-assisted digital twin synchronization in the metaverse. IEEE Internet Things J. 2023;10:268–284. doi: 10.1109/JIOT.2022.3201082. DOI
Ebadpour M., Talla J., Jamshidi M.B., Peroutka Z. 2022 20th International Conference on Mechatronics—Mechatronika (ME) IEEE; Piscatvie, NJ, USA: 2022. EKF digital twinning of induction motor drives for the metaverse; pp. 1–6. DOI
Jamshidi M.B., Ebadpour M., Moghani M.M. 2022 20th International Conference on Mechatronics—Mechatronika (ME) IEEE; Piscatvie, NJ, USA: 2022. Cancer digital twins in metaverse; pp. 1–6. DOI
Brandtstaedter H., Ludwig C., Hübner L., Tsouchnika E., Jungiewicz A., Wever U. 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe) IEEE; Piscatvie, NJ, USA: 2018. DIGITAL TWINS FOR LARGE ELECTRIC DRIVE TRAINS; pp. 1–5. DOI
Eigner M., Dickopf T., Apostolov H., Schaefer P., Faißt K.G., Keßler A. Product Lifecycle Management for a Global Market. PLM 2014. IFIP Advances in Information and Communication Technology. Springer; Berlin/Heidelberg, Germany: 2014. System Lifecycle Management: Initial Approach for a Sustainable Product Development Process Based on Methods of Model Based Systems Engineering; p. 442. DOI
Rahman K., Rahman S., Bhaskar M.S., Iqbal A., Khandakar A., Tariq M., Alamri B. Field-oriented control of five-phase induction motor fed from space vector modulated matrix converter. IEEE Access. 2022;10:17996–18007. doi: 10.1109/ACCESS.2022.3142014. DOI
Ebadpour M., Sharifian M.B.B. Cascade H-bridge multilevel inverter with low output harmonics for electric/hybrid electric vehicle applications. Int. Rev. Electr. Eng. (IREE) 2012;7:3248–3256.
Hannan M.A., Ali J.A., Ker P.J., Mohamed A., Lipu M.S.H., Hussain A. switching techniques and intelligent controllers for induction motor drive: Issues and recommendations. IEEE Access. 2018;6:47489–47510. doi: 10.1109/ACCESS.2018.2867214. DOI
Zhenyu Y. Space-Vector PWM with TMS320C24x/F24x Using Hardware and Software Determined Switching Patterns. Texas Instruments Application Report SPRA524. 1999. [(accessed on 13 January 2023)]. Available online: https://www.ti.com/lit/an/spra524/spra524.pdf?ts=1675858747746.