• This record comes from PubMed

A Super-Efficient GSM Triplexer for 5G-Enabled IoT in Sustainable Smart Grid Edge Computing and the Metaverse

. 2023 Apr 06 ; 23 (7) : . [epub] 20230406

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Global concerns regarding environmental preservation and energy sustainability have emerged due to the various impacts of constantly increasing energy demands and climate changes. With advancements in smart grid, edge computing, and Metaverse-based technologies, it has become apparent that conventional private power networks are insufficient to meet the demanding requirements of industrial applications. The unique capabilities of 5G, such as numerous connections, high reliability, low latency, and large bandwidth, make it an excellent choice for smart grid services. The 5G network industry will heavily rely on the Internet of Things (IoT) to progress, which will act as a catalyst for the development of the future smart grid. This comprehensive platform will not only include communication infrastructure for smart grid edge computing, but also Metaverse platforms. Therefore, optimizing the IoT is crucial to achieve a sustainable edge computing network. This paper presents the design, fabrication, and evaluation of a super-efficient GSM triplexer for 5G-enabled IoT in sustainable smart grid edge computing and the Metaverse. This component is intended to operate at 0.815/1.58/2.65 GHz for 5G applications. The physical layout of our triplexer is new, and it is presented for the first time in this work. The overall size of our triplexer is only 0.007 λg2, which is the smallest compared to the previous works. The proposed triplexer has very low insertion losses of 0.12 dB, 0.09 dB, and 0.42 dB at the first, second, and third channels, respectively. We achieved the minimum insertion losses compared to previous triplexers. Additionally, the common port return losses (RLs) were better than 26 dB at all channels.

See more in PubMed

McCollum D.L., Zhou W., Bertram C., De Boer H.-S., Bosetti V., Busch S., Després J., Drouet L., Emmerling J., Fay M. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy. 2018;3:589–599. doi: 10.1038/s41560-018-0179-z. DOI

Amin M. The smart-grid solution. Nature. 2013;499:145–147. doi: 10.1038/499145a. PubMed DOI

Carrillo D., Kalalas C., Raussi P., Michalopoulos D.S., Rodríguez D.Z., Kokkoniemi-Tarkkanen H., Ahola K., Nardelli P.H., Fraidenraich G., Popovski P. IEEE Wireless Communications. IEEE; Piscataway, NJ, USA: 2022. Boosting 5G on smart grid communication: A smart RAN slicing approach.

Fu Y., Li C., Yu F.R., Luan T.H., Zhao P., Liu S. A survey of blockchain and intelligent networking for the metaverse. IEEE Internet Things J. 2022;10:3587–3610. doi: 10.1109/JIOT.2022.3222521. DOI

Jamshidi M.B., Ebadpour M., Moghani M.M. Cancer Digital Twins in Metaverse; Proceedings of the 2022 20th International Conference on Mechatronics-Mechatronika (ME); Pilsen, Czech Republic. 7–9 December 2022; pp. 1–6.

Mukherjee S., Gupta S., Rawlley O., Jain S. Leveraging big data analytics in 5G-enabled IoT and industrial IoT for the development of sustainable smart cities. Trans. Emerg. Telecommun. Technol. 2022;33:e4618. doi: 10.1002/ett.4618. DOI

Jamshidi M.B., Daneshfar F. A Hybrid Echo State Network for Hypercomplex Pattern Recognition, Classification, and Big Data Analysis; Proceedings of the 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE); Mashhad, Iran. 17–18 November 2022; pp. 7–12.

Mehmood M.Y., Oad A., Abrar M., Munir H.M., Hasan S.F., Muqeet H.A.u., Golilarz N.A. Edge computing for IoT-enabled smart grid. Secur. Commun. Netw. 2021;2021:5524025. doi: 10.1155/2021/5524025. DOI

Bhatti U.A., Tang H., Wu G., Marjan S., Hussain A. Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence. Int. J. Intell. Syst. 2023;2023:8342104. doi: 10.1155/2023/8342104. DOI

Chen H., Zhang Y., Bhatti U.A., Huang M. Safe Decision Controller for Autonomous DrivingBased on Deep Reinforcement Learning inNondeterministic Environment. Sensors. 2023;23:1198. doi: 10.3390/s23031198. PubMed DOI PMC

Rezaei A., Yahya S.I., Nouri L. Design and analysis of a compact microstrip lowpass–bandpass diplexer with good performance for wireless applications. Int. J. Microw. Wirel. Technol. 2023:1–9. doi: 10.1017/S1759078722001465. DOI

Yahya S.I., Nouri L. A low-loss four-channel microstrip diplexer for wideband multi-service wireless applications. AEU-Int. J. Electron. Commun. 2021;133:153670. doi: 10.1016/j.aeue.2021.153670. DOI

Wu J.-Y., Hsu K.-W., Tseng Y.-H., Tu W.-H. High-isolation microstrip triplexer using multiple-mode resonators. IEEE Microw. Wirel. Compon. Lett. 2012;22:173–175. doi: 10.1109/LMWC.2012.2189101. DOI

Yahya S.I., Rezaei A., Nouri L. Design and fabrication of a high-performance microstrip multiplexer using computational intelligence for multi-band RF wireless communications systems. AEU-Int. J. Electron. Commun. 2020;120:153190. doi: 10.1016/j.aeue.2020.153190. DOI

Xu J., Zhu Y. Microstrip triplexer and switchable triplexer using new impedance matching circuits. Int. J. RF Microw. Comput.-Aided Eng. 2017;27:e21057. doi: 10.1002/mmce.21057. DOI

Tang C., Chen M. Packaged microstrip triplexer with star-junction topology. Electron. Lett. 2012;48:699–701. doi: 10.1049/el.2012.0469. DOI

Huang Y., Wen G., Li J. Compact microstrip triplexer based on twist-modified asymmetric split-ring resonators. Electron. Lett. 2014;50:1712–1713. doi: 10.1049/el.2014.2805. DOI

Lin S.-C., Yeh C.-Y. Design of microstrip triplexer with high isolation based on parallel coupled-line filters using T-shaped short-circuited resonators. IEEE Microw. Wirel. Compon. Lett. 2015;25:648–650. doi: 10.1109/LMWC.2015.2463215. DOI

El-Tokhy A., Wu R., Wang Y. Microstrip triplexer using a common triple-mode resonator. Microw. Opt. Technol. Lett. 2018;60:1815–1820. doi: 10.1002/mop.31244. DOI

Chen C.-F., Shen T.-M., Huang T.-Y., Wu R.-B. Design of multimode net-type resonators and their applications to filters and multiplexers. IEEE Trans. Microw. Theory Tech. 2011;59:848–856. doi: 10.1109/TMTT.2011.2109392. DOI

Rezaei A., Noori L. Novel low-loss microstrip triplexer using coupled lines and step impedance cells for 4G and WiMAX applications. Turk. J. Electr. Eng. Comput. Sci. 2018;26:1871–1880. doi: 10.3906/elk-1708-48. DOI

Percaz J.M., Chudzik M., Arnedo I., Arregui I., Teberio F., Laso M.A., Lopetegi T. Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines. IEEE Antennas Wirel. Propag. Lett. 2015;15:873–876. doi: 10.1109/LAWP.2015.2478595. DOI

Chinig A., Errkik A., Abdellaoui L.E., Tajmouati A., Zbitou J., Latrach M. Design of a microstrip diplexer and triplexer using open loop resonators. J. Microw. Optoelectron. Electromagn. Appl. 2016;15:65–80. doi: 10.1590/2179-10742016v15i2602. DOI

Keshavarz S., Abdipour A., Mohammadi A., Keshavarz R. Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines. AEU-Int. J. Electron. Commun. 2019;111:152913. doi: 10.1016/j.aeue.2019.152913. DOI

Yang T., Chi P.-L., Itoh T. Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer. IEEE Trans. Microw. Theory Tech. 2010;59:260–269. doi: 10.1109/TMTT.2010.2095029. DOI

Yang T., Rebeiz G.M. A 1.26–3.3 GHz tunable triplexer with compact size and constant bandwidth. IEEE Microw. Wirel. Compon. Lett. 2016;26:786–788. doi: 10.1109/LMWC.2016.2605461. DOI

Qian J.-F., Chen F.-C. Wide stopband microstrip triplexer using common crossed resonator and uniform impedance resonator. Prog. Electromagn. Res. Lett. 2017;69:79–86. doi: 10.2528/PIERL17041703. DOI

Rezaei A., Yahya S.I., Noori L., Jamaluddin M.H. Engineering Review: Međunarodni Časopis Namijenjen Publiciranju Originalnih Istraživanja s Aspekta Analize konstrukcija, Materijala i Novih Tehnologija u Području Strojarstva, Brodogradnje, Temeljnih Tehničkih Znanosti, Elektrotehnike, Računarstva i Građevinarstva. Volume 41. Hrčak; Belgrade, Serbia: 2021. Design and fabrication of a compact microstrip triplexer for wimax and wireless applications; pp. 85–91.

Sugchai T., Nattapong I., Apirun C. Design of microstrip triplexer using common dual-mode resonator with multi-spurious mode suppression for multiband applications. Appl. Mech. Mater. 2015;763:182–188. doi: 10.4028/www.scientific.net/AMM.763.182. DOI

Shafiei A., Jamshidi M., Khani F., Talla J., Peroutka Z., Gantassi R., Baz M., Cheikhrouhou O., Hamam H. A Hybrid Technique Based on a Genetic Algorithm for Fuzzy Multiobjective Problems in 5G, Internet of Things, and Mobile Edge Computing. Math. Probl. Eng. 2021;2021:9194578. doi: 10.1155/2021/9194578. DOI

Minh Q.N., Nguyen V.-H., Quy V.K., Ngoc L.A., Chehri A., Jeon G. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies. 2022;15:6140. doi: 10.3390/en15176140. DOI

Rezaei A., Yahya S.I., Noori L., Jamaluddin M.H. Designing high-performance microstrip quad-band bandpass filters (for multi-service communication systems): A novel method based on artificial neural networks. Neural Comput. Appl. 2022;34:7507–7521. doi: 10.1007/s00521-021-06879-7. DOI

Hong J.-S.G., Lancaster M.J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons; Hoboken, NJ, USA: 2004.

Nouri L., Yahya S.I., Rezaei A. Design and Fabrication of a Compact Branch-Line Hybrid Coupler with a Balanced Phase Using a New Microstrip Structure for GSM Applications. AEU-Int. J. Electron. Commun. 2023;161:154529. doi: 10.1016/j.aeue.2023.154529. DOI

Meng X.-Y., Zhang Y. Design of four-port planar filter circuits with multiplexer operation. IEEE Access. 2021;9:124660–124669. doi: 10.1109/ACCESS.2021.3111094. DOI

Khalaj O., Jamshidi M., Hassas P., Hosseininezhad M., Mašek B., Štadler C., Svoboda J. Metaverse and AI Digital Twinning of 42SiCr Steel Alloys. Mathematics. 2022;11:4. doi: 10.3390/math11010004. DOI

Ebadpour M., Jamshidi M., Talla J., Hashemi-Dezaki H., Peroutka Z. Digital Twin Model of Electric Drives Empowered by EKF. Sensors. 2023;23:2006. doi: 10.3390/s23042006. PubMed DOI PMC

Renugadevi N., Saravanan S., Sudha C.N. IoT based smart energy grid for sustainable cites. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.02.270. DOI

Roshani S., Koziel S., Roshani S., Jamshidi M.B., Parandin F., Szczepanski S. Design of a patch power divider with simple structure and ultra-broadband harmonics suppression. IEEE Access. 2021;9:165734–165744. doi: 10.1109/ACCESS.2021.3134252. DOI

Jamshidi M.B., Roshani S., Talla J., Sharifi-Atashgah M.S., Roshani S., Peroutka Z. Cloud-based machine learning techniques implemented by microsoft azure for designing power amplifiers; Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); New York, NY, USA. 1–4 December 2021; pp. 41–44.

Newest 20 citations...

See more in
Medvik | PubMed

Predicting Chronic Hyperplastic Candidiasis Retro-Angular Mucosa Using Machine Learning

. 2023 Oct 28 ; 13 (6) : 1335-1351. [epub] 20231028

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...