Timepix3: Temperature Influence on Radiation Energy Measurement with Si Sensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS21/120/OHK3/2T/13
Czech Technical University in Prague
CZ.02.1.01/0.0/0.0/16-019/0000778
Ministry of Education Youth and Sports
PubMed
36850799
PubMed Central
PMC9960407
DOI
10.3390/s23042201
PII: s23042201
Knihovny.cz E-zdroje
- Klíčová slova
- Timepix3, X-ray detector, compensations, energy measurement, temperature effects,
- Publikační typ
- časopisecké články MeSH
The Timepix3 readout ASIC chip is a hybrid pixelated radiation detector, designed at CERN, which contains a 256 px × 256 px matrix. Each of the 65,536 radiation-sensitive pixels can record an incoming particle, its energy deposition or time of arrival and measure them simultaneously. Since the detector is suitable for a wide range of applications from particle physics, national security and medicine to space science, it can be used in a wide range of temperatures. Until now, it has to be calibrated every time to the operating point of the application. This paper studies the possibility of energy measurement with Timepix3 equipped with a 500 m thick silicon sensor and MiniPIX readout interface in the temperatures between 10 ∘C and 70 ∘C with only one calibration. The detector has been irradiated by X-ray fluorescence photons in the energy range from 8 keV to 57 keV, and 31 keV to 81 keV photons from the 133Ba radioactive source. A deviation of 5% in apparent energy value may occur for a 10 ∘C change in temperature from the reference point, but, with the next temperature change, it can reach up to -30%. Moreover, Barium photons with an energy of 81 keV appear as deposited energy of only 55 keV at a detector temperature of 70 ∘C. An original compensation method that reduces the relative measurement error from -30% to less than 1% is presented in this paper.
Zobrazit více v PubMed
Jakubek J., Cejnarova A., Holy T., Pospisil S., Uher J., Vykydal Z. Pixel detectors for imaging with heavy charged particles. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2008;591:155–158. doi: 10.1016/j.nima.2008.03.091. DOI
Dudak J. High-resolution X-ray imaging applications of hybrid-pixel photon counting detectors Timepix. Radiat. Meas. 2020;137:106409. doi: 10.1016/j.radmeas.2020.106409. DOI
Zemlicka J., Jakubek J., Kroupa M., Hradil D., Hradilova J., Mislerova H. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix. J. Instrum. 2011;6:C01066. doi: 10.1088/1748-0221/6/01/C01066. DOI
Loaiza L., Roque G.A., Avila C.A., Mendoza L.M., Rueda R.J., Racedo J.M. Feasibility study of a TIMEPIX detector for mammography applications; Proceedings of the 13th International Conference on Medical Information Processing and Analysis, San Andres Island; Colombia. 5–7 October 2017; p. 30. DOI
Watt J., Davidson D., Johnston C., Smith C., Tlustos L., Mikulec B., Smith K., Rahman M. Dose reductions in dental X-ray imaging using Medipix. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003;513:65–69. doi: 10.1016/j.nima.2003.08.003. DOI
Dudak J., Zemlicka J., Krejci F., Polansky S., Jakubek J., Mrzilkova J., Patzelt M., Trnka J. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2015;773:81–86. doi: 10.1016/j.nima.2014.10.076. DOI
Baca T., Stibinger P., Doubravova D., Turecek D., Solc J., Rusnak J., Saska M., Jakubek J. Gamma Radiation Source Localization for Micro Aerial Vehicles with a Miniature Single-Detector Compton Event Camera; Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS); Athens, Greece. 15–18 June 2021; pp. 338–346. DOI
Stibinger P., Baca T., Saska M. Localization of Ionizing Radiation Sources by Cooperating Micro Aerial Vehicles With Pixel Detectors in Real-Time. IEEE Robot. Autom. Lett. 2020;5:3634–3641. doi: 10.1109/LRA.2020.2978456. DOI
Rubovič P., Bonasera A., Burian P., Cao Z., Fu C., Kong D., Lan H., Lou Y., Luo W., Lv C., et al. Measurements of D–D fusion neutrons generated in nanowire array laser plasma using Timepix3 detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2021;985:164680. doi: 10.1016/j.nima.2020.164680. DOI
Granja C., Uhlar R., Chuprakov I., Alexa P., Sansarbayar E., Gledenov Y., Poklop D., Olsansky V., Marek L., Vuolo M., et al. Detection of fast neutrons with the pixel detector Timepix3. J. Instrum. 2023;18:P01003. doi: 10.1088/1748-0221/18/01/P01003. DOI
Bergmann B., Billoud T., Leroy C., Pospisil S. Characterization of the Radiation Field in the ATLAS Experiment with Timepix Detectors. IEEE Trans. Nucl. Sci. 2019;66:1861–1869. doi: 10.1109/TNS.2019.2918365. DOI
Miles D.M., McEntaffer R.L., Schultz T.B., Donovan B.D., Tutt J.H., Yastishock D., Steiner T., Hillman C.R., McCoy J.A., Wages M., et al. An introduction to the water recovery x-ray rocket; Proceedings of the International Conference on UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX; San Diego, CA, USA. 6–8 August 2017; p. 28. DOI
Dániel V., Inneman A., Pína L., Zadražil V., Báča T., Stehlíková V., Nentvich O., Urban M., Maršíková V., McEntaffer R., et al. X-ray Lobster Eye all-sky monitor for rocket experiment; Proceedings of the International Conference on EUV and X-ray Optics: Synergy between Laboratory and Space V; Prague, Czech Republic. 26–27 April 2017; p. 1023503. DOI
Urban M., Nentvich O., Báča T., Veřtát I., Maršíková V., Doubravová D., Dániel V., Inneman A., Pína L., Sieger L., et al. REX: X-ray experiment on the water recovery rocket. Acta Astronaut. 2021;184:1–10. doi: 10.1016/j.actaastro.2021.03.019. DOI
Granja C., Polansky S., Vykydal Z., Pospisil S., Owens A., Kozacek Z., Mellab K., Simcak M. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit. Planet. Space Sci. 2016;125:114–129. doi: 10.1016/j.pss.2016.03.009. DOI
Gohl S., Bergmann B., Granja C., Owens A., Pichotka M., Polansky S., Pospisil S. Measurement of particle directions in low earth orbit with a Timepix. J. Instrum. 2016;11:C11023. doi: 10.1088/1748-0221/11/11/C11023. DOI
Gohl S., Bergmann B., Evans H., Nieminen P., Owens A., Posipsil S. Study of the radiation fields in LEO with the Space Application of Timepix Radiation Monitor (SATRAM) Adv. Space Res. 2019;63:1646–1660. doi: 10.1016/j.asr.2018.11.016. DOI
Furnell W., Shenoy A., Fox E., Hatfield P. First results from the LUCID-Timepix spacecraft payload onboard the TechDemoSat-1 satellite in Low Earth Orbit. Adv. Space Res. 2019;63:1523–1540. doi: 10.1016/j.asr.2018.10.045. DOI
Daniel V., Inneman A., Vertat I., Baca T., Nentvich O., Urban M., Stehlikova V., Sieger L., Skala P., Filgas R., et al. In-Orbit Commissioning of Czech Nanosatellite VZLUSAT-1 for the QB50 Mission with a Demonstrator of a Miniaturised Lobster-Eye X-Ray Telescope and Radiation Shielding Composite Materials. Space Sci. Rev. 2019;215:40. doi: 10.1007/s11214-019-0589-7. DOI
Urban M., Nentvich O., Stehlikova V., Baca T., Daniel V., Hudec R. VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application. Acta Astronaut. 2017;140:96–104. doi: 10.1016/j.actaastro.2017.08.004. DOI
Baca T., Jilek M., Vertat I., Urban M., Nentvich O., Filgas R., Granja C., Inneman A., Daniel V. Timepix in LEO Orbit onboard the VZLUSAT-1 Nanosatellite: 1-year of Space Radiation Dosimetry Measurements. J. Instrum. 2018;13:C11010. doi: 10.1088/1748-0221/13/11/C11010. DOI
Filgas R., Malich M., Kuwahara T., Broulím J., Holík M., Sakal M., Murata Y., Tomio H., Gohl S., Johan M., et al. RISEPix—A Timepix-based radiation monitor telescope onboard the RISESAT satellite. Astron. Nachrichten. 2019;340:674–680. doi: 10.1002/asna.201913674. DOI
Jakubek J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2011;633:S262–S266. doi: 10.1016/j.nima.2010.06.183. DOI
Turecek D., Jakubek J., Kroupa M., Soukup P. Energy calibration of pixel detector working in Time-Over-Threshold mode using test pulses; Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record; Valencia, Spain. 23–29 October 2011; pp. 1722–1725. DOI
Kroupa M., Jakubek J., Soukup P. Optimization of the spectroscopic response of the Timepix detector. J. Instrum. 2012;7:C02058. doi: 10.1088/1748-0221/7/02/C02058. DOI
Kroupa M., Campbell-Ricketts T., Bahadori A., Empl A. Techniques for precise energy calibration of particle pixel detectors. Rev. Sci. Instrum. 2017;88:033301. doi: 10.1063/1.4978281. PubMed DOI
George S., Kroupa M., Wheeler S., Kodaira S., Kitamura H., Tlustos L., Campbell-Ricketts T., Stoffle N., Semones E., Pinsky L. Very high energy calibration of silicon Timepix detectors. J. Instrum. 2018;13:P11014. doi: 10.1088/1748-0221/13/11/P11014. DOI
Holik M., Ahmadov G., Broulim J., Zich J., Berikov D., Mora Y., Kopatch Y., Nuruyev S., Abbaszada N., Zhumadilov K. Alpha calibration of the Timepix pixel detector exploiting energy information gained from a common electrode signal. J. Instrum. 2019;14:C06022. doi: 10.1088/1748-0221/14/06/C06022. DOI
Sommer M., Granja C., Kodaira S., Ploc O. High-energy per-pixel calibration of timepix pixel detector with laboratory alpha source. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2022;1022:165957. doi: 10.1016/j.nima.2021.165957. DOI
Nowak M., Tlustos L., Carbonez P., Verdun F., Damet J. Characterisation of the impacts of the environmental variables on Timepix3 Si sensor hybrid pixel detector performance. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020;981:164502. doi: 10.1016/j.nima.2020.164502. DOI
Urban M., Doubravová D. Timepix3: Temperature influence on X-ray measurements in counting mode with Si sensor. Radiat. Meas. 2021;141:106535. doi: 10.1016/j.radmeas.2021.106535. DOI
Llopart X., Ballabriga R., Campbell M., Tlustos L., Wong W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2007;581:485–494. doi: 10.1016/j.nima.2007.08.079. DOI
Poikela T., Plosila J., Westerlund T., Campbell M., Gaspari M.D., Llopart X., Gromov V., Kluit R., van Beuzekom M., Zappon F., et al. Timepix3: A 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 2014;9:C05013. doi: 10.1088/1748-0221/9/05/C05013. DOI
Mazziotta M. Electron–hole pair creation energy and Fano factor temperature dependence in silicon. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2008;584:436–439. doi: 10.1016/j.nima.2007.10.043. DOI
Urban M., Nentvich O., Doubravova D., Petr O., Inneman A., Hudec R., Sieger L. Timepix: Influence of temperature and vacuum on equalisation of x-ray detector and its verification; Proceedings of the International Conference on UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI; San Diego, CA, USA. 11–13 August 2019; DOI
Urban M., Doubravova D., Nentvich O. Thermal vacuum testing of Timepix3 detector. J. Instrum. 2020;15:C03040. doi: 10.1088/1748-0221/15/03/C03040. DOI
Liu Z., Peters J., Kim J.I., Das S., McCall K.M., Wessels B.W., He Y., Lin W., Kanatzidis M.G. Noise sources and their limitations on the performance of compound semiconductor hard radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2019;916:133–140. doi: 10.1016/j.nima.2018.11.013. DOI
Schön R., Alfonsi M., van Bakel N., van Beuzekom M., Koffeman E. Cool Timepix – Electronic noise of the Timepix readout chip down to -125 ∘C. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2015;771:74–77. doi: 10.1016/j.nima.2014.10.063. DOI
Wilamowski B.M., Irwin J.D. (Eds.) Fundamentals of Industrial Electronics: The Industrial Electronics Handbook. 2nd ed. CRC Press; London, UK: 2011.
Timepix3: Compensation of Thermal Distortion of Energy Measurement