Rock Surface Strain In Situ Monitoring Affected by Temperature Changes at the Požáry Field Lab (Czechia)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SS02030023
Technology Agency of the Czech Republic
359421
GAUK
PubMed
36850839
PubMed Central
PMC9963260
DOI
10.3390/s23042237
PII: s23042237
Knihovny.cz E-zdroje
- Klíčová slova
- monitoring system, rock mass, slope stability, strain gauges, thermal behavior,
- Publikační typ
- časopisecké články MeSH
The evaluation of strain in rock masses is crucial information for slope stability studies. For this purpose, a monitoring system for analyzing surface strain using resistivity strain gauges has been tested. Strain is a function of stress, and it is known that stress affects the mechanical properties of geomaterials and can lead to the destabilization of rock slopes. However, stress is difficult to measure in situ. In industrial practice, resistivity strain gauges are used for strain measurement, allowing even small strain changes to be recorded. This setting of dataloggers is usually expensive and there is no accounting for the influence of exogenous factors. Here, the aim of applying resistivity strain gauges in different configurations to measure surface strain in natural conditions, and to determine how the results are affected by factors such as temperature and incoming solar radiation, has been pursued. Subsequently, these factors were mathematically estimated, and a data processing system was created to process the results of each configuration. Finally, the new strategy was evaluated to measure in situ strain by estimating the effect of temperature. The approach highlighted high theoretical accuracy, hence the ability to detect strain variations in field conditions. Therefore, by adjusting for the influence of temperature, it is potentially possible to measure the deformation trend more accurately, while maintaining a lower cost for the sensors.
Zobrazit více v PubMed
Dixon J.L., Heimsath A.M., Amundson R. The Critical Role of Climate and Saprolite Weathering in Landscape Evolution. Earth Surf. Process Landf. 2009;34:1507–1521. doi: 10.1002/esp.1836. DOI
Riebe C.S., Kirchner J.W., Finkel R.C. Erosional and Climatic Effects on Long-Term Chemical Weathering Rates in Granitic Landscapes Spanning Diverse Climate Regimes. Earth Planet Sci. Lett. 2004;224:547–562. doi: 10.1016/j.epsl.2004.05.019. DOI
Dixon J.L., Heimsath A.M., Kaste J., Amundson R. Climate-Driven Processes of Hillslope Weathering. Geology. 2009;37:975–978. doi: 10.1130/G30045A.1. DOI
Oliva P., Viers J., Dupré B. Chemical Weathering in Granitic Environments. Chem. Geol. 2003;202:225–256. doi: 10.1016/j.chemgeo.2002.08.001. DOI
von Blanckenburg F. The Control Mechanisms of Erosion and Weathering at Basin Scale from Cosmogenic Nuclides in River Sediment. Earth Planet Sci. Lett. 2005;237:462–479. doi: 10.1016/j.epsl.2005.06.030. DOI
White A.F., Blum A.E. Effects of Climate on Chemical Weathering in Watersheds. Geochim. Cosmochim. Acta. 1995;59:1729–1747. doi: 10.1016/0016-7037(95)00078-E. DOI
Gao F., Xiong X., Xu C., Zhou K. Mechanical Property Deterioration Characteristics and a New Constitutive Model for Rocks Subjected to Freeze-Thaw Weathering Process. Int. J. Rock Mech. Min. Sci. 2021;140:104642. doi: 10.1016/j.ijrmms.2021.104642. DOI
Zheng L., Rutqvist J., Xu H., Birkholzer J.T. Coupled THMC Models for Bentonite in an Argillite Repository for Nuclear Waste: Illitization and Its Effect on Swelling Stress under High Temperature. Eng. Geol. 2017;230:118–129. doi: 10.1016/j.enggeo.2017.10.002. DOI
McFadden L.D., Eppes M.C., Gillespie A.R., Hallet B. Physical Weathering in Arid Landscapes Due to Diurnal Variation in the Direction of Solar Heating. Geol. Soc. Am. Bull. 2005;117:161–173. doi: 10.1130/B25508.1. DOI
Johari A., Fazeli A., Javadi A.A. An Investigation into Application of Jointly Distributed Random Variables Method in Reliability Assessment of Rock Slope Stability. Comput. Geotech. 2013;47:42–47. doi: 10.1016/j.compgeo.2012.07.003. DOI
Yu H., Chen W., Gong Z., Ma Y., Chen G., Li X. Influence of Temperature on the Hydro-Mechanical Behavior of Boom Clay. Int. J. Rock Mech. Min. Sci. 2018;108:189–197. doi: 10.1016/j.ijrmms.2018.04.023. DOI
Scaringi G., Loche M. A Thermo-Hydro-Mechanical Approach to Soil Slope Stability under Climate Change. Geomorphology. 2022;401:108108. doi: 10.1016/j.geomorph.2022.108108. DOI
Morcioni A., Apuani T., Cecinato F. The Role of Temperature in the Stress–Strain Evolution of Alpine Rock-Slopes: Thermo-Mechanical Modelling of the Cimaganda Rockslide. Rock Mech. Rock Eng. 2022;55:2149–2172. doi: 10.1007/s00603-022-02786-y. DOI
Delage P., Tessier D. Macroscopic Effects of Nano and Microscopic Phenomena in Clayey Soils and Clay Rocks. Geomech. Energy Environ. 2021;27:100177. doi: 10.1016/j.gete.2019.100177. DOI
Shang X., Wang J.G., Zhang Z., Gao F. A Three-Parameter Permeability Model for the Cracking Process of Fractured Rocks under Temperature Change and External Loading. Int. J. Rock Mech. Min. Sci. 2019;123:104106. doi: 10.1016/j.ijrmms.2019.104106. DOI
Pasten C., García M., Carlos Santamarina J. Thermo-Mechanical Ratcheting in Jointed Rock Masses. Géotech. Lett. 2015;5:86–90. doi: 10.1680/geolett.14.00118. DOI
Bakun-Mazor D., Keissar Y., Feldheim A., Detournay C., Hatzor Y.H. Thermally-Induced Wedging–Ratcheting Failure Mechanism in Rock Slopes. Rock Mech. Rock Eng. 2020;53:2521–2538. doi: 10.1007/s00603-020-02075-6. DOI
Alonso E.E., Zandarín M.T., Olivella S. Joints in Unsaturated Rocks: Thermo-Hydro-Mechanical Formulation and Constitutive Behaviour. J. Rock Mech. Geotech. Eng. 2013;5:200–213. doi: 10.1016/j.jrmge.2013.05.004. DOI
Martin C.D., Lanyon G.W. Measurement of In-Situ Stress in Weak Rocks at Mont Terri Rock Laboratory, Switzerland. Int. J. Rock Mech. Min. Sci. 2003;40:1077–1088. doi: 10.1016/S1365-1609(03)00113-8. DOI
Işcan A.G., Kök M.V., Bagci A.S. Estimation of Permeability and Rock Mechanical Properties of Limestone Reservoir Rocks under Stress Conditions by Strain Gauge. J. Pet. Sci. Eng. 2006;53:13–24. doi: 10.1016/j.petrol.2006.01.008. DOI
Aires-Barros L., Graça R.C., Velez A. Dry and Wet Laboratory Tests and Thermal Fatigue of Rocks. Eng. Geol. 1975;9:249–265. doi: 10.1016/0013-7952(75)90003-4. DOI
Windsor C.R. Geotechnical Instrumentation and Monitoring in Open Pit and Underground Mining. CRC Press; Boca Raton, FL, USA: 2020. Measuring Stress and Deformation in Rock Masses; pp. 33–52. DOI
Jiang J., Sun Y., Peng H., Ma X. A Stable Strain Gauge Measurement Method for Monitoring In-Situ Stress. IOP Conf. Ser. Earth Environ. Sci. 2021;861:042041. doi: 10.1088/1755-1315/861/4/042041. DOI
Komurlu E., Cihangir F., Kesimal A., Demir S. Effect of Adhesive Type on the Measurement of Modulus of Elasticity Using Electrical Resistance Strain Gauges. Arab. J. Sci. Eng. 2015;41:433–441. doi: 10.1007/s13369-015-1837-0. DOI
Krautblatter M., Moore J.R. Rock Slope Instability and Erosion: Toward Improved Process Understanding. Earth Surf. Process Landf. 2014;39:1273–1278. doi: 10.1002/esp.3578. DOI
Nigrelli G., Chiarle M., Merlone A., Coppa G., Musacchio C. Rock Temperature Variability in High-Altitude Rockfall-Prone Areas. J. Mt. Sci. 2022;19:798–811. doi: 10.1007/s11629-021-7073-z. DOI
Allen S.K., Cox S.C., Owens I.F. Rock Avalanches and Other Landslides in the Central Southern Alps of New Zealand: A Regional Study Considering Possible Climate Change Impacts. Landslides. 2011;8:33–48. doi: 10.1007/s10346-010-0222-z. DOI
Paranunzio R., Laio F., Chiarle M., Nigrelli G., Guzzetti F. Climate Anomalies Associated with the Occurrence of Rockfalls at High-Elevation in the Italian Alps. Nat. Hazards Earth Syst. Sci. 2016;16:2085–2106. doi: 10.5194/nhess-16-2085-2016. DOI
Gruber S., Haeberli W. Permafrost in Steep Bedrock Slopes and Its Temperature-Related Destabilization Following Climate Change. J. Geophys. Res. 2007;112:F02S18. doi: 10.1029/2006JF000547. DOI
Mareš J., Bruthans J., Weiss T., Filippi M. Coastal Honeycombs (Tuscany, Italy): Moisture Distribution, Evaporation Rate, Tensile Strength, and Origin. Earth Surf. Process Landf. 2022;47:1653–1667. doi: 10.1002/esp.5340. DOI
Sitzia F., Lisci C., Mirão J. Building Pathology and Environment: Weathering and Decay of Stone Construction Materials Subjected to a Csa Mediterranean Climate Laboratory Simulation. Constr. Build Mater. 2021;300:124311. doi: 10.1016/j.conbuildmat.2021.124311. DOI
Neumann J.T., Black J.L., Hœrlé S., Smith B.W., Watkins R., Lagos M., Ziegler A., Geisler T. Artificial Weathering of Rock Types Bearing Petroglyphs from Murujuga, Western Australia. Herit. Sci. 2022;10:1–21. doi: 10.1186/s40494-022-00706-5. DOI
Fiorucci M., Martino S., Bozzano F., Prestininzi A. Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy) Appl. Sci. 2020;10:7658. doi: 10.3390/app10217658. DOI
Crozier M.J. Deciphering the Effect of Climate Change on Landslide Activity: A Review. Geomorphology. 2010;124:260–267. doi: 10.1016/j.geomorph.2010.04.009. DOI
Wu J.-H., Lin H.-M., Lee D.-H., Fang S.-C. Integrity Assessment of Rock Mass behind the Shotcreted Slope Using Thermography. Eng. Geol. 2005;80:164–173. doi: 10.1016/j.enggeo.2005.04.005. DOI
Fiorucci M., Marmoni G.M., Martino S., Mazzanti P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy) Sensors. 2018;18:2221. doi: 10.3390/s18072221. PubMed DOI PMC
Loche M., Scaringi G., Blahůt J., Melis M., Funedda A., da Pelo S., Erbì I., Deiana G., Meloni M., Cocco F. An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sens. 2021;13:1265. doi: 10.3390/rs13071265. DOI
Collins B.D., Stock G.M. Rockfall Triggering by Cyclic Thermal Stressing of Exfoliation Fractures. Nat. Geosci. 2016;9:395–400. doi: 10.1038/ngeo2686. DOI
Bakun-Mazor D., Hatzor Y.H., Glaser S.D., Carlos Santamarina J. Thermally vs. Seismically Induced Block Displacements in Masada Rock Slopes. Int. J. Rock Mech. Min. Sci. 2013;61:196–211. doi: 10.1016/j.ijrmms.2013.03.005. DOI
Cerfontaine B., Collin F. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock Mech. Rock Eng. 2017;51:391–414. doi: 10.1007/s00603-017-1337-5. DOI
Koutník P., Antoš P., Hάjkovά P., Martinec P., AntoŠovά B., Ryšάnek P., Pacina J., Šancer J., Ščučka J., Brůna V., et al. Dekorační Kameny Čech, Moravy a Slezska. Univerzita J.E. Purkyně, Fakulta Životního Prostředí; Ústí Nad Labem-Město, Czech Republic: 2015.
Čepek Ladislav Kamenolomy v Horních Požárech a Mrači v Posázaví. [(accessed on 15 January 2023)]. Available online: https://books.google.cz/books/about/Kamenolomy_v_Horn%C3%ADch_Po%C5%BE%C3%A1rech_a_Mra%C4%8D.html?id=8YUwGwAACAAJ&redir_esc=y.
Rybarík V. Ušlechtilé Stavební a Socharské Kameny České Republiky. Nadace Střední Průmyslové školy Kamenické a Sochařské; Hořice, Czech Republic: 1994.
Klomínský J., Jarchovský T., Rajpoot G.S. Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Masif. Czech Geological Survey; Brno, Czech Republic: 2010.
Racek O., Blahut J., Hartvich F. Observation of the Rock Slope Thermal Regime, Coupled with Crackmeter Stability Monitoring: Initial Results from Three Different Sites in Czechia (Central Europe) Geosci. Instrum. Methods Data Syst. 2021;10:203–218. doi: 10.5194/gi-10-203-2021. DOI
Higson G.R. Recent Advances in Strain Gauges. J. Sci. Instrum. 1964;41:405–414. doi: 10.1088/0950-7671/41/7/301. DOI
Bethe K., Schön D. Thin-Film Strain-Gauge Transducers. Philips Tech. Rev. 1980;39:94–101.
Perbawa A., Gramajo E., Finkbeiner T., Santamarina J.C. Rock Triaxial Tests: Global Deformation vs Local Strain Measurements—Implications. Rock Mech. Rock Eng. 2021;54:3527–3540. doi: 10.1007/s00603-021-02389-z. DOI
Zhao Y., Liu Y., Li Y., Hao Q. Development and Application of Resistance Strain Force Sensors. Sensors. 2020;20:5826. doi: 10.3390/s20205826. PubMed DOI PMC
Ekelof S. The Genesis of the Wheatstone Bridge. Eng. Sci. Educ. J. 2001;10:37–40. doi: 10.1049/esej:20010106. DOI
Ştefănescu D.M. Handbook of Force Transducers. Springer; Berlin/Heidelberg, Germany: 2011. Wheatstone Bridge—The Basic Circuit for Strain Gauge Force Transducers; pp. 347–360.
Mohamad M., Soin N., Ibrahim F. Effect of Different Wheatstone Bridge Configurations on Sensitivity and Linearity of MEMS Piezoresistive Intracranial Pressure Sensors. J. Electron. Volt. Appl. 2020;1:14–19. doi: 10.30880/jeva.2020.01.02.002. DOI
Murray W., Miller W.R. The Bonded Electrical Resistance Strain Gage: An Introduction. OUP; Oxford, UK: 1992.
Shang J., Hencher S.R., West L.J. Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins. Rock Mech. Rock Eng. 2016;49:4213–4225. doi: 10.1007/s00603-016-1041-x. DOI
Dambly M.L.T., Nejati M., Vogler D., Saar M.O. On the Direct Measurement of Shear Moduli in Transversely Isotropic Rocks Using the Uniaxial Compression Test. Int. J. Rock Mech. Min. Sci. 2019;113:220–240. doi: 10.1016/j.ijrmms.2018.10.025. DOI
Mazzanti P. Toward Transportation Asset Management: What Is the Role of Geotechnical Monitoring? J. Civ. Struct. Health Monit. 2017;7:645–656. doi: 10.1007/s13349-017-0249-0. DOI
Nellen P.M., Anderegg P., Broennimann R., Sennhauser U.J. Smart Structures and Materials 1997: Smart Systems for Bridges, Structures, and Highways. Volume 3043. SPIE; Bellingham, WA, USA: 1997. Application of Fiber Optical and Resistance Strain Gauges for Long-Term Surveillance of Civil Engineering Structures; pp. 77–86. DOI
Li Y., Wang H., Cai W., Li S., Zhang Q. Stability Monitoring of Surrounding Rock Mass on a Forked Tunnel Using Both Strain Gauges and FBG Sensors. Measurement. 2020;153:107449. doi: 10.1016/j.measurement.2019.107449. DOI
Zeng W., Huang Z., Wu Y., Li S., Zhang R., Zhao K. Experimental Investigation on Mining-Induced Strain and Failure Characteristics of Rock Masses of Mine Floor. Geomat. Nat. Hazards Risk. 2020;11:491–509. doi: 10.1080/19475705.2020.1734102. DOI
Fahool F., Moarefvand P. A Numerical Investigation for In-Situ Measurement of Rock Mass Mechanical Properties with a CCBO Probe and Evaluation of the Method’s Error in Estimating the In-Situ Stresses with the Overcoring Technique. J. Sustain. Undergr. Explor. 2022;2:55–68. doi: 10.30880/jsue.2022.02.01.008. DOI
Petr W., Lubomir S., Jan N., Petr K., Tomas K. Determination of Stress State in Rock Mass Using Strain Gauge Probes CCBO. Procedia Eng. 2016;149:544–552. doi: 10.1016/j.proeng.2016.06.703. DOI
Lanzolla A.M.L., Attivissimo F., Percoco G., Ragolia M.A., Stano G., di Nisio A. Additive Manufacturing for Sensors: Piezoresistive Strain Gauge with Temperature Compensation. Appl. Sci. 2022;12:8607. doi: 10.3390/app12178607. DOI
Marmoni G.M., Fiorucci M., Grechi G., Martino S. Modelling of Thermo-Mechanical Effects in a Rock Quarry Wall Induced by near-Surface Temperature Fluctuations. Int. J. Rock Mech. Min. Sci. 2020;134:104440. doi: 10.1016/j.ijrmms.2020.104440. DOI
Attewell P.B., Farmer I.W. Fatigue Behaviour of Rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1973;10:1–9. doi: 10.1016/0148-9062(73)90055-7. DOI
Gudmundsson A. Rock Fractures in Geological Processes. Cambridge University Press; Cambridge, UK: 2011.
Cappa P., Marinozzi F., Sciuto S.A. The “Strain-Gauge Thermocouple”: A Novel Device for Simultaneous Strain and Temperature Measurement. Rev. Sci. Instrum. 2001;72:193–197. doi: 10.1063/1.1329903. DOI
Bowden W., Sales Manager O. Drift in Bonded Foil Strain Gauge-Based Sensors. [(accessed on 20 January 2023)]. Available online: https://www.hbm.com/en/6218/drift-in-bonded-foil-strain-gauge-based-sensors/
Ulusay R., Hudson J.A. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. Commission on Testing Methods, International Society for Rock Mechanics; Lisbon, Portugal: 2009. 1974–2006.
Wang H., Mang H., Yuan Y., Pichler B.L.A. Multiscale Thermoelastic Analysis of the Thermal Expansion Coefficient and of Microscopic Thermal Stresses of Mature Concrete. Materials. 2019;12:2689. doi: 10.3390/ma12172689. PubMed DOI PMC