Rock Surface Strain In Situ Monitoring Affected by Temperature Changes at the Požáry Field Lab (Czechia)

. 2023 Feb 16 ; 23 (4) : . [epub] 20230216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36850839

Grantová podpora
SS02030023 Technology Agency of the Czech Republic
359421 GAUK

The evaluation of strain in rock masses is crucial information for slope stability studies. For this purpose, a monitoring system for analyzing surface strain using resistivity strain gauges has been tested. Strain is a function of stress, and it is known that stress affects the mechanical properties of geomaterials and can lead to the destabilization of rock slopes. However, stress is difficult to measure in situ. In industrial practice, resistivity strain gauges are used for strain measurement, allowing even small strain changes to be recorded. This setting of dataloggers is usually expensive and there is no accounting for the influence of exogenous factors. Here, the aim of applying resistivity strain gauges in different configurations to measure surface strain in natural conditions, and to determine how the results are affected by factors such as temperature and incoming solar radiation, has been pursued. Subsequently, these factors were mathematically estimated, and a data processing system was created to process the results of each configuration. Finally, the new strategy was evaluated to measure in situ strain by estimating the effect of temperature. The approach highlighted high theoretical accuracy, hence the ability to detect strain variations in field conditions. Therefore, by adjusting for the influence of temperature, it is potentially possible to measure the deformation trend more accurately, while maintaining a lower cost for the sensors.

Zobrazit více v PubMed

Dixon J.L., Heimsath A.M., Amundson R. The Critical Role of Climate and Saprolite Weathering in Landscape Evolution. Earth Surf. Process Landf. 2009;34:1507–1521. doi: 10.1002/esp.1836. DOI

Riebe C.S., Kirchner J.W., Finkel R.C. Erosional and Climatic Effects on Long-Term Chemical Weathering Rates in Granitic Landscapes Spanning Diverse Climate Regimes. Earth Planet Sci. Lett. 2004;224:547–562. doi: 10.1016/j.epsl.2004.05.019. DOI

Dixon J.L., Heimsath A.M., Kaste J., Amundson R. Climate-Driven Processes of Hillslope Weathering. Geology. 2009;37:975–978. doi: 10.1130/G30045A.1. DOI

Oliva P., Viers J., Dupré B. Chemical Weathering in Granitic Environments. Chem. Geol. 2003;202:225–256. doi: 10.1016/j.chemgeo.2002.08.001. DOI

von Blanckenburg F. The Control Mechanisms of Erosion and Weathering at Basin Scale from Cosmogenic Nuclides in River Sediment. Earth Planet Sci. Lett. 2005;237:462–479. doi: 10.1016/j.epsl.2005.06.030. DOI

White A.F., Blum A.E. Effects of Climate on Chemical Weathering in Watersheds. Geochim. Cosmochim. Acta. 1995;59:1729–1747. doi: 10.1016/0016-7037(95)00078-E. DOI

Gao F., Xiong X., Xu C., Zhou K. Mechanical Property Deterioration Characteristics and a New Constitutive Model for Rocks Subjected to Freeze-Thaw Weathering Process. Int. J. Rock Mech. Min. Sci. 2021;140:104642. doi: 10.1016/j.ijrmms.2021.104642. DOI

Zheng L., Rutqvist J., Xu H., Birkholzer J.T. Coupled THMC Models for Bentonite in an Argillite Repository for Nuclear Waste: Illitization and Its Effect on Swelling Stress under High Temperature. Eng. Geol. 2017;230:118–129. doi: 10.1016/j.enggeo.2017.10.002. DOI

McFadden L.D., Eppes M.C., Gillespie A.R., Hallet B. Physical Weathering in Arid Landscapes Due to Diurnal Variation in the Direction of Solar Heating. Geol. Soc. Am. Bull. 2005;117:161–173. doi: 10.1130/B25508.1. DOI

Johari A., Fazeli A., Javadi A.A. An Investigation into Application of Jointly Distributed Random Variables Method in Reliability Assessment of Rock Slope Stability. Comput. Geotech. 2013;47:42–47. doi: 10.1016/j.compgeo.2012.07.003. DOI

Yu H., Chen W., Gong Z., Ma Y., Chen G., Li X. Influence of Temperature on the Hydro-Mechanical Behavior of Boom Clay. Int. J. Rock Mech. Min. Sci. 2018;108:189–197. doi: 10.1016/j.ijrmms.2018.04.023. DOI

Scaringi G., Loche M. A Thermo-Hydro-Mechanical Approach to Soil Slope Stability under Climate Change. Geomorphology. 2022;401:108108. doi: 10.1016/j.geomorph.2022.108108. DOI

Morcioni A., Apuani T., Cecinato F. The Role of Temperature in the Stress–Strain Evolution of Alpine Rock-Slopes: Thermo-Mechanical Modelling of the Cimaganda Rockslide. Rock Mech. Rock Eng. 2022;55:2149–2172. doi: 10.1007/s00603-022-02786-y. DOI

Delage P., Tessier D. Macroscopic Effects of Nano and Microscopic Phenomena in Clayey Soils and Clay Rocks. Geomech. Energy Environ. 2021;27:100177. doi: 10.1016/j.gete.2019.100177. DOI

Shang X., Wang J.G., Zhang Z., Gao F. A Three-Parameter Permeability Model for the Cracking Process of Fractured Rocks under Temperature Change and External Loading. Int. J. Rock Mech. Min. Sci. 2019;123:104106. doi: 10.1016/j.ijrmms.2019.104106. DOI

Pasten C., García M., Carlos Santamarina J. Thermo-Mechanical Ratcheting in Jointed Rock Masses. Géotech. Lett. 2015;5:86–90. doi: 10.1680/geolett.14.00118. DOI

Bakun-Mazor D., Keissar Y., Feldheim A., Detournay C., Hatzor Y.H. Thermally-Induced Wedging–Ratcheting Failure Mechanism in Rock Slopes. Rock Mech. Rock Eng. 2020;53:2521–2538. doi: 10.1007/s00603-020-02075-6. DOI

Alonso E.E., Zandarín M.T., Olivella S. Joints in Unsaturated Rocks: Thermo-Hydro-Mechanical Formulation and Constitutive Behaviour. J. Rock Mech. Geotech. Eng. 2013;5:200–213. doi: 10.1016/j.jrmge.2013.05.004. DOI

Martin C.D., Lanyon G.W. Measurement of In-Situ Stress in Weak Rocks at Mont Terri Rock Laboratory, Switzerland. Int. J. Rock Mech. Min. Sci. 2003;40:1077–1088. doi: 10.1016/S1365-1609(03)00113-8. DOI

Işcan A.G., Kök M.V., Bagci A.S. Estimation of Permeability and Rock Mechanical Properties of Limestone Reservoir Rocks under Stress Conditions by Strain Gauge. J. Pet. Sci. Eng. 2006;53:13–24. doi: 10.1016/j.petrol.2006.01.008. DOI

Aires-Barros L., Graça R.C., Velez A. Dry and Wet Laboratory Tests and Thermal Fatigue of Rocks. Eng. Geol. 1975;9:249–265. doi: 10.1016/0013-7952(75)90003-4. DOI

Windsor C.R. Geotechnical Instrumentation and Monitoring in Open Pit and Underground Mining. CRC Press; Boca Raton, FL, USA: 2020. Measuring Stress and Deformation in Rock Masses; pp. 33–52. DOI

Jiang J., Sun Y., Peng H., Ma X. A Stable Strain Gauge Measurement Method for Monitoring In-Situ Stress. IOP Conf. Ser. Earth Environ. Sci. 2021;861:042041. doi: 10.1088/1755-1315/861/4/042041. DOI

Komurlu E., Cihangir F., Kesimal A., Demir S. Effect of Adhesive Type on the Measurement of Modulus of Elasticity Using Electrical Resistance Strain Gauges. Arab. J. Sci. Eng. 2015;41:433–441. doi: 10.1007/s13369-015-1837-0. DOI

Krautblatter M., Moore J.R. Rock Slope Instability and Erosion: Toward Improved Process Understanding. Earth Surf. Process Landf. 2014;39:1273–1278. doi: 10.1002/esp.3578. DOI

Nigrelli G., Chiarle M., Merlone A., Coppa G., Musacchio C. Rock Temperature Variability in High-Altitude Rockfall-Prone Areas. J. Mt. Sci. 2022;19:798–811. doi: 10.1007/s11629-021-7073-z. DOI

Allen S.K., Cox S.C., Owens I.F. Rock Avalanches and Other Landslides in the Central Southern Alps of New Zealand: A Regional Study Considering Possible Climate Change Impacts. Landslides. 2011;8:33–48. doi: 10.1007/s10346-010-0222-z. DOI

Paranunzio R., Laio F., Chiarle M., Nigrelli G., Guzzetti F. Climate Anomalies Associated with the Occurrence of Rockfalls at High-Elevation in the Italian Alps. Nat. Hazards Earth Syst. Sci. 2016;16:2085–2106. doi: 10.5194/nhess-16-2085-2016. DOI

Gruber S., Haeberli W. Permafrost in Steep Bedrock Slopes and Its Temperature-Related Destabilization Following Climate Change. J. Geophys. Res. 2007;112:F02S18. doi: 10.1029/2006JF000547. DOI

Mareš J., Bruthans J., Weiss T., Filippi M. Coastal Honeycombs (Tuscany, Italy): Moisture Distribution, Evaporation Rate, Tensile Strength, and Origin. Earth Surf. Process Landf. 2022;47:1653–1667. doi: 10.1002/esp.5340. DOI

Sitzia F., Lisci C., Mirão J. Building Pathology and Environment: Weathering and Decay of Stone Construction Materials Subjected to a Csa Mediterranean Climate Laboratory Simulation. Constr. Build Mater. 2021;300:124311. doi: 10.1016/j.conbuildmat.2021.124311. DOI

Neumann J.T., Black J.L., Hœrlé S., Smith B.W., Watkins R., Lagos M., Ziegler A., Geisler T. Artificial Weathering of Rock Types Bearing Petroglyphs from Murujuga, Western Australia. Herit. Sci. 2022;10:1–21. doi: 10.1186/s40494-022-00706-5. DOI

Fiorucci M., Martino S., Bozzano F., Prestininzi A. Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy) Appl. Sci. 2020;10:7658. doi: 10.3390/app10217658. DOI

Crozier M.J. Deciphering the Effect of Climate Change on Landslide Activity: A Review. Geomorphology. 2010;124:260–267. doi: 10.1016/j.geomorph.2010.04.009. DOI

Wu J.-H., Lin H.-M., Lee D.-H., Fang S.-C. Integrity Assessment of Rock Mass behind the Shotcreted Slope Using Thermography. Eng. Geol. 2005;80:164–173. doi: 10.1016/j.enggeo.2005.04.005. DOI

Fiorucci M., Marmoni G.M., Martino S., Mazzanti P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy) Sensors. 2018;18:2221. doi: 10.3390/s18072221. PubMed DOI PMC

Loche M., Scaringi G., Blahůt J., Melis M., Funedda A., da Pelo S., Erbì I., Deiana G., Meloni M., Cocco F. An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sens. 2021;13:1265. doi: 10.3390/rs13071265. DOI

Collins B.D., Stock G.M. Rockfall Triggering by Cyclic Thermal Stressing of Exfoliation Fractures. Nat. Geosci. 2016;9:395–400. doi: 10.1038/ngeo2686. DOI

Bakun-Mazor D., Hatzor Y.H., Glaser S.D., Carlos Santamarina J. Thermally vs. Seismically Induced Block Displacements in Masada Rock Slopes. Int. J. Rock Mech. Min. Sci. 2013;61:196–211. doi: 10.1016/j.ijrmms.2013.03.005. DOI

Cerfontaine B., Collin F. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock Mech. Rock Eng. 2017;51:391–414. doi: 10.1007/s00603-017-1337-5. DOI

Koutník P., Antoš P., Hάjkovά P., Martinec P., AntoŠovά B., Ryšάnek P., Pacina J., Šancer J., Ščučka J., Brůna V., et al. Dekorační Kameny Čech, Moravy a Slezska. Univerzita J.E. Purkyně, Fakulta Životního Prostředí; Ústí Nad Labem-Město, Czech Republic: 2015.

Čepek Ladislav Kamenolomy v Horních Požárech a Mrači v Posázaví. [(accessed on 15 January 2023)]. Available online: https://books.google.cz/books/about/Kamenolomy_v_Horn%C3%ADch_Po%C5%BE%C3%A1rech_a_Mra%C4%8D.html?id=8YUwGwAACAAJ&redir_esc=y.

Rybarík V. Ušlechtilé Stavební a Socharské Kameny České Republiky. Nadace Střední Průmyslové školy Kamenické a Sochařské; Hořice, Czech Republic: 1994.

Klomínský J., Jarchovský T., Rajpoot G.S. Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Masif. Czech Geological Survey; Brno, Czech Republic: 2010.

Racek O., Blahut J., Hartvich F. Observation of the Rock Slope Thermal Regime, Coupled with Crackmeter Stability Monitoring: Initial Results from Three Different Sites in Czechia (Central Europe) Geosci. Instrum. Methods Data Syst. 2021;10:203–218. doi: 10.5194/gi-10-203-2021. DOI

Higson G.R. Recent Advances in Strain Gauges. J. Sci. Instrum. 1964;41:405–414. doi: 10.1088/0950-7671/41/7/301. DOI

Bethe K., Schön D. Thin-Film Strain-Gauge Transducers. Philips Tech. Rev. 1980;39:94–101.

Perbawa A., Gramajo E., Finkbeiner T., Santamarina J.C. Rock Triaxial Tests: Global Deformation vs Local Strain Measurements—Implications. Rock Mech. Rock Eng. 2021;54:3527–3540. doi: 10.1007/s00603-021-02389-z. DOI

Zhao Y., Liu Y., Li Y., Hao Q. Development and Application of Resistance Strain Force Sensors. Sensors. 2020;20:5826. doi: 10.3390/s20205826. PubMed DOI PMC

Ekelof S. The Genesis of the Wheatstone Bridge. Eng. Sci. Educ. J. 2001;10:37–40. doi: 10.1049/esej:20010106. DOI

Ştefănescu D.M. Handbook of Force Transducers. Springer; Berlin/Heidelberg, Germany: 2011. Wheatstone Bridge—The Basic Circuit for Strain Gauge Force Transducers; pp. 347–360.

Mohamad M., Soin N., Ibrahim F. Effect of Different Wheatstone Bridge Configurations on Sensitivity and Linearity of MEMS Piezoresistive Intracranial Pressure Sensors. J. Electron. Volt. Appl. 2020;1:14–19. doi: 10.30880/jeva.2020.01.02.002. DOI

Murray W., Miller W.R. The Bonded Electrical Resistance Strain Gage: An Introduction. OUP; Oxford, UK: 1992.

Shang J., Hencher S.R., West L.J. Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins. Rock Mech. Rock Eng. 2016;49:4213–4225. doi: 10.1007/s00603-016-1041-x. DOI

Dambly M.L.T., Nejati M., Vogler D., Saar M.O. On the Direct Measurement of Shear Moduli in Transversely Isotropic Rocks Using the Uniaxial Compression Test. Int. J. Rock Mech. Min. Sci. 2019;113:220–240. doi: 10.1016/j.ijrmms.2018.10.025. DOI

Mazzanti P. Toward Transportation Asset Management: What Is the Role of Geotechnical Monitoring? J. Civ. Struct. Health Monit. 2017;7:645–656. doi: 10.1007/s13349-017-0249-0. DOI

Nellen P.M., Anderegg P., Broennimann R., Sennhauser U.J. Smart Structures and Materials 1997: Smart Systems for Bridges, Structures, and Highways. Volume 3043. SPIE; Bellingham, WA, USA: 1997. Application of Fiber Optical and Resistance Strain Gauges for Long-Term Surveillance of Civil Engineering Structures; pp. 77–86. DOI

Li Y., Wang H., Cai W., Li S., Zhang Q. Stability Monitoring of Surrounding Rock Mass on a Forked Tunnel Using Both Strain Gauges and FBG Sensors. Measurement. 2020;153:107449. doi: 10.1016/j.measurement.2019.107449. DOI

Zeng W., Huang Z., Wu Y., Li S., Zhang R., Zhao K. Experimental Investigation on Mining-Induced Strain and Failure Characteristics of Rock Masses of Mine Floor. Geomat. Nat. Hazards Risk. 2020;11:491–509. doi: 10.1080/19475705.2020.1734102. DOI

Fahool F., Moarefvand P. A Numerical Investigation for In-Situ Measurement of Rock Mass Mechanical Properties with a CCBO Probe and Evaluation of the Method’s Error in Estimating the In-Situ Stresses with the Overcoring Technique. J. Sustain. Undergr. Explor. 2022;2:55–68. doi: 10.30880/jsue.2022.02.01.008. DOI

Petr W., Lubomir S., Jan N., Petr K., Tomas K. Determination of Stress State in Rock Mass Using Strain Gauge Probes CCBO. Procedia Eng. 2016;149:544–552. doi: 10.1016/j.proeng.2016.06.703. DOI

Lanzolla A.M.L., Attivissimo F., Percoco G., Ragolia M.A., Stano G., di Nisio A. Additive Manufacturing for Sensors: Piezoresistive Strain Gauge with Temperature Compensation. Appl. Sci. 2022;12:8607. doi: 10.3390/app12178607. DOI

Marmoni G.M., Fiorucci M., Grechi G., Martino S. Modelling of Thermo-Mechanical Effects in a Rock Quarry Wall Induced by near-Surface Temperature Fluctuations. Int. J. Rock Mech. Min. Sci. 2020;134:104440. doi: 10.1016/j.ijrmms.2020.104440. DOI

Attewell P.B., Farmer I.W. Fatigue Behaviour of Rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1973;10:1–9. doi: 10.1016/0148-9062(73)90055-7. DOI

Gudmundsson A. Rock Fractures in Geological Processes. Cambridge University Press; Cambridge, UK: 2011.

Cappa P., Marinozzi F., Sciuto S.A. The “Strain-Gauge Thermocouple”: A Novel Device for Simultaneous Strain and Temperature Measurement. Rev. Sci. Instrum. 2001;72:193–197. doi: 10.1063/1.1329903. DOI

Bowden W., Sales Manager O. Drift in Bonded Foil Strain Gauge-Based Sensors. [(accessed on 20 January 2023)]. Available online: https://www.hbm.com/en/6218/drift-in-bonded-foil-strain-gauge-based-sensors/

Ulusay R., Hudson J.A. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. Commission on Testing Methods, International Society for Rock Mechanics; Lisbon, Portugal: 2009. 1974–2006.

Wang H., Mang H., Yuan Y., Pichler B.L.A. Multiscale Thermoelastic Analysis of the Thermal Expansion Coefficient and of Microscopic Thermal Stresses of Mature Concrete. Materials. 2019;12:2689. doi: 10.3390/ma12172689. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Infrared thermography reveals weathering hotspots at the Požáry field laboratory

. 2024 Jun 25 ; 14 (1) : 14682. [epub] 20240625

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...