Infrared thermography reveals weathering hotspots at the Požáry field laboratory
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
SS02030023
Technological Agency of the Czech Republic
RVO 67985891
Czech Academy of Sciences
359421
Charles University Grant Agency
LL2316
Ministry of Education and Culture of the Czech Republic
24-12316S
Czech Science Foundation
PubMed
38918559
PubMed Central
PMC11199624
DOI
10.1038/s41598-024-65527-x
PII: 10.1038/s41598-024-65527-x
Knihovny.cz E-resources
- Keywords
- Cooling rate index, Informative time window, Infrared thermography, Porosity, Rock mass, Slope stability,
- Publication type
- Journal Article MeSH
Evaluating physical properties and mechanical parameters of rock slopes and their spatial variability is challenging, particularly at locations inaccessible for fieldwork. This obstacle can be bypassed by acquiring spatially-distributed field data indirectly. InfraRed Thermography (IRT) has emerged as a promising technology to statistically infer rock properties and inform slope stability models. Here, we explore the use of Cooling Rate Indices (CRIs) to quantify the thermal response of a granodiorite rock wall within the recently established Požáry Test Site in Czechia. We observe distinct cooling patterns across different segments of the wall, compatible with the different degrees of weathering evaluated in the laboratory and suggested by IRT observations of cored samples. Our findings support previous examinations of the efficacy of this method and unveil correlations between cooling phases in the field and in the laboratory. We discuss the scale-dependency of the Informative Time Window (ITW) of the CRIs, noting that it may serve as a reference for conducting systematic IRT field surveys. We contend that our approach not only represents a viable and scientifically robust strategy for characterising rock slopes but also holds the potential for identifying unstable areas.
See more in PubMed
Bieniawski ZT. Classification of rock masses for engineering: The RMR system and future trends. In: Bieniawski ZT, editor. Rock Testing and Site Characterization. Elsevier; 1993. pp. 553–573.
Volkwein A, et al. Rockfall characterisation and structural protection—A review. Nat. Hazard. 2011;11:2617–2651. doi: 10.5194/nhess-11-2617-2011. DOI
Casagli, N., Intrieri, E., Tofani, V., Gigli, G. & Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 4, 51–64 (2023).
Vivaldi V, et al. Airborne combined photogrammetry—infrared thermography applied to landslide remote monitoring. Landslides. 2022;20:297–313. doi: 10.1007/s10346-022-01970-z. DOI
Massi A, Ortolani M, Vitulano D, Bruni V, Mazzanti P. Enhancing the thermal images of the upper scarp of the Poggio Baldi Landslide (Italy) by physical modeling and image analysis. Remote Sens. (Basel) 2023;15:907. doi: 10.3390/rs15040907. DOI
Franzosi F, Casiraghi S, Colombo R, Crippa C, Agliardi F. Quantitative evaluation of the fracturing state of crystalline rocks using infrared thermography. Rock Mech. Rock Eng. 2023 doi: 10.1007/s00603-023-03389-x. DOI
Guerin A, et al. Detection of rock bridges by infrared thermal imaging and modeling. Sci. Rep. 2019;9:1–19. doi: 10.1038/s41598-019-49336-1. PubMed DOI PMC
Mineo S, Calcaterra D, Perriello Zampelli S, Pappalardo G. Application of Infrared Thermography for the survey of intensely jointed rock slopes. Rend. Online Soc. Geol. Ital. 2015;35:212–215.
De Vita P, Cevasco A, Cavallo C. Detailed rock failure susceptibility mapping in steep rocky coasts by means of non-contact geostructural surveys: The case study of the Tigullio Gulf (Eastern Liguria, Northern Italy) Nat. Hazards Earth Syst. Sci. 2012;12:867–880. doi: 10.5194/nhess-12-867-2012. DOI
Martino S, Mazzanti P. Analysis of sea cliff slope stability integrating traditional geomechanical surveys and remote sensing. Nat. Hazards Earth Syst. Sci. 2013;1:3689–3734.
Melis MT, et al. Thermal remote sensing from UAVs: A review on methods in coastal cliffs prone to landslides. Remote Sens (Basel) 2020;12:1971. doi: 10.3390/rs12121971. DOI
Loche M, et al. An infrared thermography approach to evaluate the strength of a rock cliff. Remote Sens. (Basel) 2021;13:1265. doi: 10.3390/rs13071265. DOI
Coll C, et al. Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sens. Environ. 2012;116:211–225. doi: 10.1016/j.rse.2010.01.027. DOI
Loche M, et al. Surface temperature controls the pattern of post-earthquake landslide activity. Sci. Rep. 2022;12:988. doi: 10.1038/s41598-022-04992-8. PubMed DOI PMC
Mineo S, Pappalardo G. The use of infrared thermography for porosity assessment of intact rock. Rock Mech. Rock Eng. 2016;49:3027–3039. doi: 10.1007/s00603-016-0992-2. DOI
Mineo S, Pappalardo G. InfraRed Thermography presented as an innovative and non-destructive solution to quantify rock porosity in laboratory. Int. J. Rock Mech. Min. Sci. 2019;115:99–110. doi: 10.1016/j.ijrmms.2019.01.012. DOI
Scaringi G, Loche M. A thermo-hydro-mechanical approach to soil slope stability under climate change. Geomorphology. 2022;401:108108. doi: 10.1016/j.geomorph.2022.108108. DOI
Frodella W, Gigli G, Morelli S, Lombardi L, Casagli N. Landslide mapping and characterization through infrared thermography (IRT): Suggestions for a methodological approach from some case studies. Remote Sens (Basel) 2017;9:1281. doi: 10.3390/rs9121281. DOI
Franzosi F, Crippa C, Derron M-H, Jaboyedoff M, Agliardi F. Slope-scale remote mapping of rock mass fracturing by modeling cooling trends derived from infrared thermography. Remote Sens. (Basel) 2023;15:4525. doi: 10.3390/rs15184525. DOI
Aicardi I, et al. A methodology for acquisition and processing of thermal data acquired by UAVs: A test about subfluvial springs’ investigations. Geomat. Nat. Hazards Risk. 2017;8:5–17. doi: 10.1080/19475705.2016.1225229. DOI
Mineo S, Caliò D, Pappalardo G. UAV-based photogrammetry and infrared thermography applied to rock mass survey for geomechanical purposes. Remote Sens. 2022;14:473. doi: 10.3390/rs14030473. DOI
Scaringi G, et al. Some considerations on the use of numerical methods to simulate past landslides and possible new failures: The case of the recent Xinmo landslide (Sichuan, China) Landslides. 2018;15:1359–1375. doi: 10.1007/s10346-018-0953-9. DOI
Fan X, et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: A preliminary report. Landslides. 2019;16:139–154. doi: 10.1007/s10346-018-1084-z. DOI
Froude MJ, Petley DN. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018;18:2161–2181. doi: 10.5194/nhess-18-2161-2018. DOI
Görüm T, Fidan S. Spatiotemporal variations of fatal landslides in Turkey. Landslides. 2021;18:1691–1705. doi: 10.1007/s10346-020-01580-7. DOI
Wang D, et al. Threat from above! Assessing the risk from the Tonghua high-locality landslide in Sichuan, China. Landslides. 2022 doi: 10.1007/s10346-021-01836-w. DOI
Li W, et al. Characterizing large rockfalls using their seismic signature: A case study of Hongya rockfall. Eng. Geol. 2023;323:107222. doi: 10.1016/j.enggeo.2023.107222. DOI
Wang D, et al. Dam-break dynamics at Huohua Lake following the 2017 Mw 6.5 Jiuzhaigou earthquake in Sichuan, China. Eng. Geol. 2021;289:106145. doi: 10.1016/j.enggeo.2021.106145. DOI
Pappalardo G., Mineo S. & Marchese G. Effects of cubical specimen sizing on the uniaxial compressive strength of Etna volcanic rocks (Italy). Ital. J. Eng. Geol. Environ.2, (2013).
Pappalardo G, Mineo S. Investigation on the mechanical attitude of basaltic rocks from Mount Etna through InfraRed thermography and laboratory tests. Constr. Build. Mater. 2017;134:228–235. doi: 10.1016/j.conbuildmat.2016.12.146. DOI
Corominas J, et al. Quantitative assessment of the residual risk in a rockfall protected area. Landslides. 2005;2:343–357. doi: 10.1007/s10346-005-0022-z. DOI
Bout B, Lombardo L, van Westen CJ, Jetten VG. Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environ. Modell. Softw. 2018;105:1–16. doi: 10.1016/j.envsoft.2018.03.017. DOI
Alvioli M, et al. Rockfall susceptibility and network-ranked susceptibility along the Italian railway. Eng. Geol. 2021;293:106301. doi: 10.1016/j.enggeo.2021.106301. DOI
Alvioli M, De Matteo A, Castaldo R, Tizzani P, Reichenbach P. Three-dimensional simulations of rockfalls in Ischia, Southern Italy, and preliminary susceptibility zonation. Geomat. Nat. Hazards Risk. 2022;13:2712–2736. doi: 10.1080/19475705.2022.2131472. DOI
Loche M, Scaringi G. Temperature and shear-rate effects in two pure clays: Possible implications for clay landslides. Results Eng. 2023;20:101647. doi: 10.1016/J.RINENG.2023.101647. DOI
Duque J, Loche M, Scaringi G. Rate-dependency of residual shear strength of soils: Implications for landslide evolution. Géotechnique Lett. 2023;13:1–16. doi: 10.1680/jgele.23.00004. DOI
Pradhan NR, Ogden FL, Tachikawa Y, Takara K. scaling of slope, upslope area, and soil water deficit: Implications for transferability and regionalization in topographic index modeling. Water Resour. Res. 2008 doi: 10.1029/2007WR006667. DOI
Pachepsky Y, Hill RL. Scale and scaling in soils. Geoderma. 2017;287:4–30. doi: 10.1016/j.geoderma.2016.08.017. DOI
Pappalardo G, Mineo S, Zampelli SP, Cubito A, Calcaterra D. InfraRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016;83:182–196. doi: 10.1016/j.ijrmms.2016.01.010. DOI
Grechi G, Fiorucci M, Marmoni GM, Martino S. 3D thermal monitoring of jointed rock masses through infrared thermography and photogrammetry. Remote Sens. 2021;13:957. doi: 10.3390/rs13050957. DOI
Alcaíno-Olivares R, Ziegler M, Bickel S, Leith K, Perras MA. Monitoring and modelling the thermally assisted deformation of a rock column above tomb KV42 in the valley of the Kings, Egypt. Rock Mech. Rock Eng. 2023 doi: 10.1007/s00603-023-03458-1. DOI
Czajkowski KP, et al. Estimating environmental variables using thermal remote sensing. In: Quattrochi D, Luvall J, et al., editors. Thermal Sensing in Land Surface Processes. CRC Press; 2004.
Ninomiya Y, Fu B, Cudahy TJ. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens. Environ. 2005;99:127–139. doi: 10.1016/j.rse.2005.06.009. DOI
Hook SJ, Gabell AR, Green AA, Kealy PS. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992;42:123–135. doi: 10.1016/0034-4257(92)90096-3. DOI
Sass O, et al. Infrared thermography monitoring of rock faces—Potential and pitfalls. Geomorphology. 2023;439:108837. doi: 10.1016/j.geomorph.2023.108837. DOI
Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E. Modelling diverse processes in the petrogenesis of a composite Batholith: The central Bohemian Pluton, Central European Hercynides. J. Petrol. 2000;41:511–543. doi: 10.1093/petrology/41.4.511. DOI
Klomínský, J., Jarchovský T. & Rajpoot G.S. Atlas of plutonic rocks and orthogneisses in the Bohemian Massif - Bohemicum. Czech Geological Survey, Prague 1–106 (2010).
Racek O, Blahut J, Hartvich F. Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: Initial results from three different sites in Czechia (central Europe) Geosci. Instr. Methods Data Syst. 2021;10:203–218. doi: 10.5194/gi-10-203-2021. DOI
Paranunzio R, Laio F, Chiarle M, Nigrelli G, Guzzetti F. Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps. Nat. Hazards Earth Syst. Sci. 2016;16:2085–2106. doi: 10.5194/nhess-16-2085-2016. DOI
Lim M, et al. Arctic rock coast responses under a changing climate. Remote Sens. Environ. 2020;236:111500. doi: 10.1016/j.rse.2019.111500. DOI
Nigrelli G, Chiarle M, Merlone A, Coppa G, Musacchio C. Rock temperature variability in high-altitude rockfall-prone areas. J. Mt. Sci. 2022;19:798–811. doi: 10.1007/s11629-021-7073-z. DOI
Racek O, Balek J, Loche M, Vích D, Blahůt J. Rock surface strain in situ monitoring affected by temperature changes at the Požáry field lab (Czechia) Sensors. 2023;23:2237. doi: 10.3390/s23042237. PubMed DOI PMC
Hatheway AW. The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006. Environ. Eng. Geosci. 2009;15:47–48. doi: 10.2113/gseegeosci.15.1.47. DOI
Aydin, A. Upgraded ISRM suggested method for determining sound velocity by ultrasonic pulse transmission technique. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. 95–99. 10.1007/978-3-319-07713-0_6. (2013).
Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech. Rock Eng. 2014;47:267–274. doi: 10.1007/s00603-013-0422-7. DOI
Feng G, Wang X, Kang Y, Luo S, Hu Y. Effects of temperature on the relationship between mode-I fracture toughness and tensile strength of rock. Appl. Sci. 2019;9:1326. doi: 10.3390/app9071326. DOI
Navarre-Sitchler A, Brantley SL, Rother G. How porosity increases during incipient weathering of crystalline silicate rocks. Rev. Mineral Geochem. 2015;80:331–354. doi: 10.2138/rmg.2015.80.10. DOI
Loche M, Scaringi G, Blahůt J, Hartvich F. Investigating the potential of infrared thermography to inform on physical and mechanical properties of soils for geotechnical engineering. Remote Sens. (Basel) 2022;14:4067. doi: 10.3390/rs14164067. DOI
Mezza S, Vazquez P, Ben M’barek Jemai M, Fronteau G. Infrared thermography for the investigation of physical–chemical properties and thermal durability of Tunisian limestone rocks. Constr. Build. Mater. 2022;339:127470. doi: 10.1016/j.conbuildmat.2022.127470. DOI
Merrien-Soukatchoff V, Gasc-Barbier M. The effect of natural thermal cycles on rock outcrops: Knowledge and prospect. Rock Mech. Rock Eng. 2023;56:6797–6822. doi: 10.1007/s00603-023-03420-1. DOI