Are population level familial risks and germline genetics meeting each other?

. 2023 Mar 08 ; 21 (1) : 3. [epub] 20230308

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36882784

Grantová podpora
856620 Horizon 2020 Framework Programme

Odkazy

PubMed 36882784
PubMed Central PMC9993691
DOI 10.1186/s13053-023-00247-3
PII: 10.1186/s13053-023-00247-3
Knihovny.cz E-zdroje

Large amounts of germline sequencing data have recently become available and we sought to compare these results with population-based family history data. Family studies are able to describe aggregation of any defined cancers in families. The Swedish Family-Cancer Database is the largest of its kind in the world, covering the Swedish families through nearly a century with all cancers in family members since the start of national cancer registration in 1958. The database allows estimation of familial risks, ages of cancer onset and the proportion of familial cancer in different family constellations. Here, we review the proportion of familial cancer for all common cancers and specify them based on the number of affected individuals. With the exception of a few cancers, age of onset of familial cancer is not different from all cancers combined. The highest proportions of familial cancer were found for prostate (26.4%), breast (17.5%) and colorectal (15.7%) cancers, but the proportions of high-risk families with multiple affected individuals were only 2.8%, 1% and 0.9%, respectively. A large sequencing study on female breast cancer found that BRCA1 and BRCA2 mutations could account for 2% of the cases (subtracting the proportions in healthy individuals) and that all germline mutations accounted for 5.6% of the cases. Early age of onset was a distinct feature of only BRCA mutations. In heritable colorectal cancer, Lynch syndrome genes dominate. Large studies on penetrance in Lynch syndrome have shown an approximately linear increase in risk from 40-50 years up to age 80 years. Interesting novel data revealed a strong modification of familial risk by unknown factors. High-risk germline genetics of prostate cancer is characterized by BRCA and other DNA repair genes. HOXB13 encodes a transcription factor which contributes to germline risk of prostate cancer. A strong interaction was shown with a polymorphism in the CIP2A gene. The emerging germline landscape of common cancers can be reasonably accommodated by family data on these cancers as to high-risk proportions and age of onset.

Zobrazit více v PubMed

Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–799. doi: 10.1038/nm1087. PubMed DOI

Daly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, et al. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(1):77–102. doi: 10.6004/jnccn.2021.0001. PubMed DOI

Gupta S, Provenzale D, Llor X, Halverson AL, Grady W, Chung DC, et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 2.2019. J Natl Compr Canc Netw. 2019;17(9):1032–41. doi: 10.6004/jnccn.2019.0044. PubMed DOI

Hemminki K, Eng C. Clinical genetic counselling for familial cancers requires reliable data on familial cancer risks and general action plans. J Med Genet. 2004;41:801–807. doi: 10.1136/jmg.2004.022731. PubMed DOI PMC

Pilarski R. How have multigene panels changed the clinical practice of genetic counseling and testing. J Natl Compr Canc Netw. 2021;19(1):103–108. doi: 10.6004/jnccn.2020.7674. PubMed DOI

Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–308. doi: 10.1038/nature12981. PubMed DOI PMC

Thompson ER, Rowley SM, Li N, McInerny S, Devereux L, Wong-Brown MW, et al. Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol. 2016;34(13):1455–1459. doi: 10.1200/JCO.2015.63.7454. PubMed DOI

Maxwell KN, Domchek SM, Nathanson KL, Robson ME. Population frequency of germline BRCA1/2 mutations. J Clin Oncol. 2016;34(34):4183–4185. doi: 10.1200/JCO.2016.67.0554. PubMed DOI

Hemminki K, Sundquist K, Sundquist J, Försti A, Hemminki A, Li X. Familial Risks and Proportions Describing Population Landscape of Familial Cancer. Cancers. 2021;13(17):4385. doi: 10.3390/cancers13174385. PubMed DOI PMC

Frank C, Fallah M, Ji J, Sundquist J, Hemminki K. The population impact of familial cancer, a major cause of cancer. Int J Cancer. 2014;134:1899–1906. doi: 10.1002/ijc.28510. PubMed DOI

Frank C, Sundquist J, Yu H, Hemminki A, Hemminki K. Concordant and discordant familial cancer: Familial risks, proportions and population impact. Int J Cancer. 2017;140:1510–1516. doi: 10.1002/ijc.30583. PubMed DOI

Lorenzo Bermejo J, Hemminki K. Familial lung cancer and aggregation of smoking habits:a simulation of the effect of shared environmental factors on the familial risk of cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:1738–1740. doi: 10.1158/1055-9965.EPI-05-0201. PubMed DOI

Weires M, Bermejo JL, Sundquist J, Hemminki K. Clustering of concordant and discordant cancer types in Swedish couples is rare. Eur J Cancer. 2011;47:98–106. doi: 10.1016/j.ejca.2010.06.125. PubMed DOI

Brandt A, Bermejo JL, Sundquist J, Hemminki K. Age at diagnosis and age at death in familial prostate cancer. Oncologist. 2009;14:1209–1217. doi: 10.1634/theoncologist.2009-0132. PubMed DOI

Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, Wahlström C, et al. Breast cancer risk genes - association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428–439. doi: 10.1056/NEJMoa1913948. PubMed DOI PMC

Chubb D, Broderick P, Frampton M, Kinnersley B, Sherborne A, Penegar S, et al. Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing. J Clin Oncol. 2015;33(5):426–432. doi: 10.1200/JCO.2014.56.5689. PubMed DOI

Møller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Gareth Evans D, et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut. 2018;67(7):1306–1316. doi: 10.1136/gutjnl-2017-314057. PubMed DOI PMC

Dominguez-Valentin M, Sampson JR, Seppälä TT, Ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):15–25. doi: 10.1038/s41436-019-0596-9. PubMed DOI PMC

Jenkins MA. Variation in the risk of colorectal cancer in families with Lynch syndrome: a retrospective cohort study. Lancet Oncol. 2021;22(7):1014–1022. doi: 10.1016/S1470-2045(21)00189-3. PubMed DOI PMC

Pritzlaff M, Tian Y, Reineke P, Stuenkel AJ, Allen K, Gutierrez S, et al. Diagnosing hereditary cancer predisposition in men with prostate cancer. Genet Med. 2020;22(9):1517–1523. doi: 10.1038/s41436-020-0830-5. PubMed DOI PMC

Wei J, Shi Z, Na R, Wang CH, Resurreccion WK, Zheng SL, et al. Germline HOXB13 G84E mutation carriers and risk to twenty common types of cancer: results from the UK Biobank. Br J Cancer. 2020;123(9):1356–1359. doi: 10.1038/s41416-020-01036-8. PubMed DOI PMC

Sipeky C, Gao P, Zhang Q, Wang L, Ettala O, Talala KM, et al. Synergistic Interaction of HOXB13 and CIP2A Predisposes to Aggressive Prostate Cancer. Clin Cancer Res. 2018;24(24):6265–6276. doi: 10.1158/1078-0432.CCR-18-0444. PubMed DOI PMC

Brandt A, Bermejo JL, Sundquist J, Hemminki K. Age of onset in familial cancer. Ann Oncol. 2008;19:2084–2088. doi: 10.1093/annonc/mdn527. PubMed DOI PMC

Kharazmi E, Fallah M, Sundquist K, Hemminki K. Familial risk of early and late onset cancer: nationwide prospective cohort study. BMJ. 2012;345:e8076. doi: 10.1136/bmj.e8076. PubMed DOI PMC

Scott RJ. Modifier genes and Lynch syndrome: some considerations. Hered Cancer Clin Pract. 2022;20(1):35. doi: 10.1186/s13053-022-00240-2. PubMed DOI PMC

Lichtenstein P, Holm N, Verkasalo P, Illiado A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer. N Engl J Med. 2000;343:78–85. doi: 10.1056/NEJM200007133430201. PubMed DOI

Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68–76. doi: 10.1001/jama.2015.17703. PubMed DOI PMC

Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–932. doi: 10.1056/NEJMra012242. PubMed DOI

Haraldsdottir S, Rafnar T, Frankel WL, Einarsdottir S, Sigurdsson A, Hampel H, et al. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2. Nat Commun. 2017;8:14755. doi: 10.1038/ncomms14755. PubMed DOI PMC

Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer) N Engl J Med. 2005;352(18):1851–1860. doi: 10.1056/NEJMoa043146. PubMed DOI

Ni Raghallaigh H, Eeles R. Genetic predisposition to prostate cancer: an update. Fam Cancer. 2022;21(1):101–114. doi: 10.1007/s10689-021-00227-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...