Attenuation of Hypocretin/Orexin Signaling Is Associated With Increased Mortality After Myocardial Infarction

. 2023 Mar 21 ; 12 (6) : e028987. [epub] 20230309

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36892078

Background The hypocretin/orexin system has been shown to play a role in heart failure. Whether it also influences myocardial infarction (MI) outcomes is unknown. We evaluated the effect of the rs7767652 minor allele T associated with decreased transcription of the hypocretin/orexin receptor-2 and circulating orexin A concentrations on mortality risk after MI. Methods and Results Data from a single-center, prospectively designed registry of consecutive patients hospitalized for MI at a large tertiary cardiology center were analyzed. Patients without previous history of MI or heart failure were included. A random population sample was used to compare allele frequencies in the general population. Out of 1009 patients (aged 64±12 years, 74.6% men) after MI, 6.1% were homozygotes (TT) and 39.4% heterozygotes (CT) for minor allele. Allele frequencies in the MI group did not differ from 1953 subjects from general population (χ2 P=0.62). At index hospitalization, MI size was the same, but ventricular fibrillation and the need for cardiopulmonary resuscitation were more prevalent in the TT allele variant. Among patients with ejection fraction ≤40% at discharge, the TT variant was associated with a lower increase in left ventricular ejection fraction during follow-up (P=0.03). During the 27-month follow-up, there was a statistically significant association of the TT variant with increased mortality risk (hazard ratio [HR], 2.83; P=0.001). Higher circulating orexin A was associated with a lower mortality risk (HR, 0.41; P<0.05). Conclusions Attenuation of hypocretin/orexin signaling is associated with increased mortality risk after MI. This effect may be partially explained by the increased arrhythmic risk and the effect on the left ventricular systolic function recovery.

Zobrazit více v PubMed

Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–474. doi: 10.1016/S0896-6273(00)00058-1 PubMed DOI PMC

Hoever P, de Haas S, Winkler J, Schoemaker RC, Chiossi E, van Gerven J, Dingemanse J. Orexin receptor antagonism, a new sleep‐promoting paradigm: an ascending single‐dose study with almorexant. Clin Pharmacol Ther. 2010;87:593–600. doi: 10.1038/clpt.2010.19 PubMed DOI

Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev. 2015;20:63–73. doi: 10.1016/j.arr.2014.11.001 PubMed DOI PMC

Perez MV, Pavlovic A, Shang C, Wheeler MT, Miller CL, Liu J, Dewey FE, Pan S, Thanaporn PK, Absher D, et al. Systems genomics identifies a key role for hypocretin/orexin receptor‐2 in human heart failure. J Am Coll Cardiol. 2015;66:2522–2533. doi: 10.1016/j.jacc.2015.09.061 PubMed DOI PMC

Ibrahim NE, Rabideau DJ, Gaggin HK, Belcher AM, Conrad MJ, Jarolim P, Januzzi JL Jr. Circulating concentrations of orexin a predict left ventricular myocardial remodeling. J Am Coll Cardiol. 2016;68:2238–2240. doi: 10.1016/j.jacc.2016.08.049 PubMed DOI

Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, Adámková V, Wohlfahrt P. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8:222–237. doi: 10.1002/ehf2.13144 PubMed DOI PMC

Wohlfahrt P, Jenča D, Melenovský V, Šramko M, Kotrč M, Želízko M, Mrázková J, Adámková V, Pitha J, Kautzner J. Trajectories and determinants of left ventricular ejection fraction after the first myocardial infarction in the current era of primary coronary interventions. Front Cardiovasc Med. 2022;9:1051995. doi: 10.3389/fcvm.2022.1051995 PubMed DOI PMC

Wohlfahrt P, Jenča D, Stehlik J, Melenovský V, Mrázková J, Staněk V, Kettner J, Šramko M, Želízko M, Adámková V, et al. Heart failure‐related quality‐of‐life impairment after myocardial infarction. Clin Res Cardiol. 2023;112:39–48. doi: 10.1007/s00392-022-02008-z PubMed DOI

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD; ESC Scientific Document Group . Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2018;40:237–269. PubMed

Cífková R, Bruthans J, Wohlfahrt P, Krajčoviechová A, Šulc P, Jozífová M, Eremiášová L, Pudil J, Linhart A, Widimský J Jr, et al. 30‐year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post‐MONICA, 1985–2016/17. PLoS One. 2020;15:e0232845. doi: 10.1371/journal.pone.0232845 PubMed DOI PMC

de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS II, et al. The hypocretins: hypothalamus‐specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95:322–327. doi: 10.1073/pnas.95.1.322 PubMed DOI PMC

Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein‐coupled receptors that regulate feeding behavior. Cell. 1998;92:573–585. doi: 10.1016/S0092-8674(00)80949-6 PubMed DOI

Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology. 2020;167:107993. doi: 10.1016/j.neuropharm.2020.107993 PubMed DOI

Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction‐related behaviors. Neuropharmacology. 2020;168:108013. doi: 10.1016/j.neuropharm.2020.108013 PubMed DOI

Couvineau A, Voisin T, Nicole P, Gratio V, Blais A. Orexins: a promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J Gastroenterol. 2021;27:7582–7596. doi: 10.3748/wjg.v27.i44.7582 PubMed DOI PMC

Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences & mechanisms. Neuropeptides. 2018;68:1–6. doi: 10.1016/j.npep.2018.02.002 PubMed DOI

Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, Yanagisawa M. Enhanced orexin receptor‐2 signaling prevents diet‐induced obesity and improves leptin sensitivity. Cell Metab. 2009;9:64–76. doi: 10.1016/j.cmet.2008.10.010 PubMed DOI PMC

Nowak KW, Strowski MZ, Switonska MM, Kaczmarek P, Singh V, Fabis M, Mackowiak P, Nowak M, Malendowicz LK. Evidence that orexins a and B stimulate insulin secretion from rat pancreatic islets via both receptor subtypes. Int J Mol Med. 2005;15:969–972. doi: 10.3892/ijmm.15.6.969 PubMed DOI

Zhang C, Sun C, Wang B, Yan P, Wu A, Yang G, Li W. Orexin‐a stimulates the expression of GLUT4 in a glucose dependent manner in the liver of orange‐spotted grouper (Epinephelus coioides). Comp Biochem Physiol A Mol Integr Physiol. 2016;199:95–104. doi: 10.1016/j.cbpa.2016.05.027 PubMed DOI

Patel VH, Karteris E, Chen J, Kyrou I, Mattu HS, Dimitriadis GK, Rodrigo G, Antoniades C, Antonopoulos A, Tan BK, et al. Functional cardiac orexin receptors: role of orexin‐B/orexin 2 receptor in myocardial protection. Clin Sci (Lond). 2018;132:2547–2564. doi: 10.1042/CS20180150 PubMed DOI PMC

Zeller M, Steg PG, Ravisy J, Laurent Y, Janin‐Manificat L, L'Huillier I, Beer J‐C, Oudot A, Rioufol G, Makki H, et al. Prevalence and impact of metabolic syndrome on hospital outcomes in acute myocardial infarction. Arch Inter Med. 2005;165:1192–1198. doi: 10.1001/archinte.165.10.1192 PubMed DOI

Oliver MF. Control of free fatty acids during acute myocardial ischaemia. Heart. 2010;96:1883–1884. doi: 10.1136/hrt.2010.205534 PubMed DOI

Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front Endocrinol (Lausanne). 2019;10:709. doi: 10.3389/fendo.2019.00709 PubMed DOI PMC

Halade GV, Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine. 2022;79:103992. doi: 10.1016/j.ebiom.2022.103992 PubMed DOI PMC

Wu WY, Biery DW, Singh A, Divakaran S, Berman AN, Ayuba G, DeFilippis EM, Nasir K, Januzzi JL, Di Carli MF, et al. Recovery of left ventricular systolic function and clinical outcomes in young adults with myocardial infarction. J Am Coll Cardiol. 2020;75:2804–2815. doi: 10.1016/j.jacc.2020.03.074 PubMed DOI PMC

Sikder D, Kodadek T. The neurohormone orexin stimulates hypoxia‐inducible factor‐1 activity. Genes Dev. 2007;21:2995–3005. doi: 10.1101/gad.1584307 PubMed DOI PMC

Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005;288:H971–H976. doi: 10.1152/ajpheart.00374.2004 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...