• This record comes from PubMed

Missorting of plasma miRNAs in aging and Alzheimer's disease

. 2023 Apr ; 165 (2) : 149-161. [epub] 20230327

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
R01 NS095269 NINDS NIH HHS - United States

The observation that aging is regulated by microRNAs (miRNA) and at the same time represents the greatest risk factor for Alzheimer's disease (AD), prompted us to examine the circulating miRNA network in AD beyond aging. We here show that plasma miRNAs in aging are downregulated and predicted to be preferentially targeted to the extracellular vesicle (EV) content. In AD, miRNAs are further downregulated, display altered proportions of motifs relevant to their loading into EVs and secretion propensity, and are forecast to be found exclusively in EVs. The circulating miRNA network in AD, therefore, reflects pathological exacerbation of the aging process whereby physiological suppression of AD pathology by miRNAs becomes insufficient.

See more in PubMed

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7, 270-279. https://doi.org/10.1016/j.jalz.2011.03.008

Barros-Viegas, A. T., Carmona, V., Ferreiro, E., Guedes, J., Cardoso, A. M., Cunha, P., Pereira de Almeida, L., Resende de Oliveira, C., Pedro de Magalhães, J., Peça, J., & Cardoso, A. L. (2020). miRNA-31 improves cognition and abolishes amyloid-beta pathology by targeting APP and BACE1 in an animal model of Alzheimer's disease. Mol Ther Nucleic Acids, 19, 1219-1236. https://doi.org/10.1016/j.omtn.2020.01.010

Boehm, M., & Slack, F. (2005). A developmental timing microRNA and its target regulate life span in C. elegans. Science, 310, 1954-1957. https://doi.org/10.1126/science.1115596

Borras, C., Serna, E., Gambini, J., Ingles, M., & Vina, J. (2017). Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. Mechanisms of Ageing and Development, 168, 54-57. https://doi.org/10.1016/j.mad.2017.07.003

Boudreau, R. L., Jiang, P., Gilmore, B. L., Spengler, R. M., Tirabassi, R., Nelson, J. A., Ross, C. A., Xing, Y., & Davidson, B. L. (2014). Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron, 81, 294-305. https://doi.org/10.1016/j.neuron.2013.10.062

Cataldo, A. M., Hamilton, D. J., Barnett, J. L., Paskevich, P. A., & Nixon, R. A. (1996). Properties of the endosomal-lysosomal system in the human central nervous system: Disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. The Journal of Neuroscience, 16, 186-199. https://doi.org/10.1523/JNEUROSCI.16-01-00186.1996

Cataldo, A. M., Thayer, C. Y., Bird, E. D., Wheelock, T. R., & Nixon, R. A. (1990). Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer's disease: Evidence for a neuronal origin. Brain Research, 513, 181-192. https://doi.org/10.1016/0006-8993(90)90456-l

Cha, D. J., Mengel, D., Mustapic, M., Liu, W., Selkoe, D. J., Kapogiannis, D., Galasko, D., Rissman, R. A., Bennett, D. A., & Walsh, D. M. (2019). miR-212 and miR-132 are downregulated in Neurally derived plasma exosomes of Alzheimer's patients. Frontiers in Neuroscience, 13, 1208. https://doi.org/10.3389/fnins.2019.01208

Chen, Q., Deng, N., Lu, K., Liao, Q., Long, X., Gou, D., Bi, F., & Zhou, J. (2021). Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson's disease. Scientific Reports, 11, 15268. https://doi.org/10.1038/s41598-021-94734-z

Chen, X. Q., Das, U., Park, G., & Mobley, W. C. (2021). Normal levels of KIF5 but reduced KLC1 levels in both Alzheimer disease and Alzheimer disease in down syndrome: Evidence suggesting defects in anterograde transport. Alzheimer's Research & Therapy, 13, 59. https://doi.org/10.1186/s13195-021-00796-6

Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L. F., Théry, C., & Raposo, G. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science, 126, 5553-5565. https://doi.org/10.1242/jcs.128868

Das, S., et al. (2019). The extracellular RNA communication consortium: Establishing foundational knowledge and Technologies for Extracellular RNA research. Cell, 177, 231-242. https://doi.org/10.1016/j.cell.2019.03.023

de Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. (2015). MAGMA: Generalized gene-set analysis of GWAS data. PLoS Computational Biology, 11, e1004219. https://doi.org/10.1371/journal.pcbi.1004219

Dong, H., Li, J., Huang, L., Chen, X., Li, D., Wang, T., Hu, C., Xu, J., Zhang, C., Zen, K., Xiao, S., Yan, Q., Wang, C., & Zhang, C. Y. (2015). Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer's disease. Disease Markers, 2015, 625659. https://doi.org/10.1155/2015/625659

Fabbiano, F., Corsi, J., Gurrieri, E., Trevisan, C., Notarangelo, M., & D'Agostino, V. G. (2020). RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles, 10, e12043. https://doi.org/10.1002/jev2.12043

Frank, F., Sonenberg, N., & Nagar, B. (2010). Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature, 465, 818-822. https://doi.org/10.1038/nature09039

Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19, 92-105. https://doi.org/10.1101/gr.082701.108

Garcia-Martin, R., Wang, G., Brandão, B. B., Zanotto, T. M., Shah, S., Kumar Patel, S., Schilling, B., & Kahn, C. R. (2022). MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 601, 446-451. https://doi.org/10.1038/s41586-021-04234-3

Geekiyanage, H., Jicha, G. A., Nelson, P. T., & Chan, C. (2012). Blood serum miRNA: Non-invasive biomarkers for Alzheimer's disease. Experimental Neurology, 235, 491-496. https://doi.org/10.1016/j.expneurol.2011.11.026

Geekiyanage, H., Rayatpisheh, S., Wohlschlegel, J. A., Brown, R., Jr., & Ambros, V. (2020). Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 117, 24213-24223. https://doi.org/10.1073/pnas.2008323117

Gibbings, D., Mostowy, S., & Voinnet, O. (2013). Autophagy selectively regulates miRNA homeostasis. Autophagy, 9, 781-783. https://doi.org/10.4161/auto.23694

Gibbings, D. J., Ciaudo, C., Erhardt, M., & Voinnet, O. (2009). Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biology, 11, 1143-1149. https://doi.org/10.1038/ncb1929

He, H., Liu, A., Zhang, W., Yang, H., Zhang, M., Xu, H., Liu, Y., Hong, B., Yan, F., Yue, L., Wang, J., Xiao, S., Xie, Z., & Wang, T. (2021). Novel plasma miRNAs as biomarkers and therapeutic targets of Alzheimer's disease at the prodromal stage. Journal of Alzheimer's Disease, 83, 779-790. https://doi.org/10.3233/JAD-210307

Hebert, S. S., Katrien, H., et al. (2009). MicroRNA regulation of Alzheimer's amyloid precursor protein expression. Neurobiology of Disease, 33, 422-428. https://doi.org/10.1016/j.nbd.2008.11.009

Holm, A., Possovre, M. L., Bandarabadi, M., Moseholm, K. F., Justinussen, J. L., Bozic, I., Lemcke, R., Arribat, Y., Amati, F., Silahtaroglu, A., Juventin, M., Adamantidis, A., Tafti, M., & Kornum, B. R. (2022). The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proceedings of the National Academy of Sciences of the United States of America, 119, e2112225119. https://doi.org/10.1073/pnas.2112225119

Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., … Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527, 329-335. https://doi.org/10.1038/nature15756

Jack, C. R., Jr., et al. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7, 257-262. https://doi.org/10.1016/j.jalz.2011.03.004

Johnson, E. C. B., Carter, E. K., Dammer, E. B., Duong, D. M., Gerasimov, E. S., Liu, Y., Liu, J., Betarbet, R., Ping, L., Yin, L., Serrano, G. E., Beach, T. G., Peng, J., de Jager, P. L., Haroutunian, V., Zhang, B., Gaiteri, C., Bennett, D. A., Gearing, M., … Seyfried, N. T. (2022). Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature Neuroscience, 25, 213-225. https://doi.org/10.1038/s41593-021-00999-y

Kalra, H., Simpson, R. J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V. C., Borràs, F. E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A., Cocucci, E., Falcon-Perez, J. M., Gabrielsson, S., Gho, Y. S., Gupta, D., Harsha, H. C., … Mathivanan, S. (2012). Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biology, 10, e1001450. https://doi.org/10.1371/journal.pbio.1001450

Keller, A., Gröger, L., Tschernig, T., Solomon, J., Laham, O., Schaum, N., Wagner, V., Kern, F., Schmartz, G. P., Li, Y., Borcherding, A., Meier, C., Wyss-Coray, T., Meese, E., Fehlmann, T., & Ludwig, N. (2022). miRNATissueAtlas2: An update to the human miRNA tissue atlas. Nucleic Acids Research, 50, D211-D221. https://doi.org/10.1093/nar/gkab808

Kern, F., Aparicio-Puerta, E., Li, Y., Fehlmann, T., Kehl, T., Wagner, V., Ray, K., Ludwig, N., Lenhof, H. P., Meese, E., & Keller, A. (2021). miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Research, 49, W409-W416. https://doi.org/10.1093/nar/gkab297

Kimura, N., Samura, E., Suzuki, K., Okabayashi, S., Shimozawa, N., & Yasutomi, Y. (2016). Dynein dysfunction reproduces age-dependent retromer deficiency: Concomitant disruption of retrograde trafficking is required for alteration in beta-amyloid precursor protein metabolism. The American Journal of Pathology, 186, 1952-1966. https://doi.org/10.1016/j.ajpath.2016.03.006

Kmetzsch, V., Anquetil, V., Saracino, D., Rinaldi, D., Camuzat, A., Gareau, T., Jornea, L., Forlani, S., Couratier, P., Wallon, D., Pasquier, F., Robil, N., de la Grange, P., Moszer, I., le Ber, I., Colliot, O., Becker, E., & PREV-DEMALS study group. (2021). Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 92, 485-493. https://doi.org/10.1136/jnnp-2020-324647

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Review Disease Primers, 7, 33. https://doi.org/10.1038/s41572-021-00269-y

Kornfeld, J. W., Baitzel, C., Könner, A. C., Nicholls, H. T., Vogt, M. C., Herrmanns, K., Scheja, L., Haumaitre, C., Wolf, A. M., Knippschild, U., Seibler, J., Cereghini, S., Heeren, J., Stoffel, M., & Brüning, J. C. (2013). Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 494, 111-115. https://doi.org/10.1038/nature11793

Kumar, P., Dezso, Z., MacKenzie, C., Oestreicher, J., Agoulnik, S., Byrne, M., Bernier, F., Yanagimachi, M., Aoshima, K., & Oda, Y. (2013). Circulating miRNA biomarkers for Alzheimer's disease. PLoS One, 8, e69807. https://doi.org/10.1371/journal.pone.0069807

Kummer, M. P., Ising, C., Kummer, C., Sarlus, H., Griep, A., Vieira-Saecker, A., Schwartz, S., Halle, A., Brückner, M., Händler, K., Schultze, J. L., Beyer, M., Latz, E., & Heneka, M. T. (2021). Microglial PD-1 stimulation by astrocytic PD-L1 suppresses neuroinflammation and Alzheimer's disease pathology. The EMBO Journal, 40, e108662. https://doi.org/10.15252/embj.2021108662

Kunkle, B. W., et al. (2019). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nature Genetics, 51, 414-430. https://doi.org/10.1038/s41588-019-0358-2

Kwart, D., Gregg, A., Scheckel, C., Murphy, E. A., Paquet, D., Duffield, M., Fak, J., Olsen, O., Darnell, R. B., & Tessier-Lavigne, M. (2019). A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs. Not Abeta. Neuron, 104, 1022. https://doi.org/10.1016/j.neuron.2019.11.010

Lambert, E., Saha, O., Soares Landeira, B., Melo de Farias, A. R., Hermant, X., Carrier, A., Pelletier, A., Gadaut, J., Davoine, L., Dupont, C., Amouyel, P., Bonnefond, A., Lafont, F., Abdelfettah, F., Verstreken, P., Chapuis, J., Barois, N., Delahaye, F., Dermaut, B., … Dourlen, P. (2022). The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathologica Communications, 10, 4. https://doi.org/10.1186/s40478-021-01285-5

Langfelder, P., Luo, R., Oldham, M. C., & Horvath, S. (2011). Is my network module preserved and reproducible? PLoS Computational Biology, 7, e1001057. https://doi.org/10.1371/journal.pcbi.1001057

Lark, D. S., & LaRocca, T. J. (2021). Expression of exosome biogenesis genes is differentially altered by aging in the mouse and in the human brain during Alzheimer's disease. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 77, 659-663. https://doi.org/10.1093/gerona/glab322

Leidinger, P., Backes, C., Deutscher, S., Schmitt, K., Mueller, S. C., Frese, K., Haas, J., Ruprecht, K., Paul, F., Stähler, C., Lang, C. J. G., Meder, B., Bartfai, T., Meese, E., & Keller, A. (2013). A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biology, 14, R78. https://doi.org/10.1186/gb-2013-14-7-r78

Liguori, M., Nuzziello, N., Introna, A., Consiglio, A., Licciulli, F., D’Errico, E., Scarafino, A., Distaso, E., & Simone, I. L. (2018). Dysregulation of MicroRNAs and target genes networks in peripheral blood of patients with sporadic amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 11, 288. https://doi.org/10.3389/fnmol.2018.00288

Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G. J., Kennerdell, J. R., Zhu, Y., Wang, L. S., & Bonini, N. M. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in drosophila. Nature, 482, 519-523. https://doi.org/10.1038/nature10810

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2022). Hallmarks of aging: An expanding universe. Cell, 186, 243-278. https://doi.org/10.1016/j.cell.2022.11.001

Lorenzi, L., Chiu, H. S., Avila Cobos, F., Gross, S., Volders, P. J., Cannoodt, R., Nuytens, J., Vanderheyden, K., Anckaert, J., Lefever, S., Tay, A. P., de Bony, E. J., Trypsteen, W., Gysens, F., Vromman, M., Goovaerts, T., Hansen, T. B., Kuersten, S., Nijs, N., … Mestdagh, P. (2021). The RNA atlas expands the catalog of human non-coding RNAs. Nature Biotechnology, 39, 1453-1465. https://doi.org/10.1038/s41587-021-00936-1

Lu, L., Dai, W. Z., Zhu, X. C., & Ma, T. (2021). Analysis of serum miRNAs in Alzheimer's disease. American Journal of Alzheimer's Disease and Other Dementias, 36, 15333175211021712. https://doi.org/10.1177/15333175211021712

Lugli, G., Cohen, A. M., Bennett, D. A., Shah, R. C., Fields, C. J., Hernandez, A. G., & Smalheiser, N. R. (2015). Plasma Exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers. PLoS One, 10, e0139233. https://doi.org/10.1371/journal.pone.0139233

Magen, I. Y. N.-S., Warren, J. D., Heller, C., Swift, I., Bobeva, Y., Malaspina, A., Rohrer, J. D., Fratta, P., & Hornstein, E. (2021). miRNA biomarkers for diagnosis of ALS and FTD, developed by a nonlinear machine learning approach. medRxiv. https://doi.org/10.1101/2020.01.22.20018408

Manzano-Crespo, M., Atienza, M., & Cantero, J. L. (2019). Lower serum expression of miR-181c-5p is associated with increased plasma levels of amyloid-beta 1-40 and cerebral vulnerability in normal aging. Transl Neurodegener, 8, 34. https://doi.org/10.1186/s40035-019-0174-8

Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., Menon, M., He, L., Abdurrob, F., Jiang, X., Martorell, A. J., Ransohoff, R. M., Hafler, B. P., Bennett, D. A., Kellis, M., & Tsai, L. H. (2019). Single-cell transcriptomic analysis of Alzheimer's disease. Nature, 570, 332-337. https://doi.org/10.1038/s41586-019-1195-2

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7, 263-269. https://doi.org/10.1016/j.jalz.2011.03.005

Mengel-From, J., Rønne, M. E., Carlsen, A. L., Skogstrand, K., Larsen, L. A., Tan, Q., Christiansen, L., Christensen, K., & Heegaard, N. H. H. (2018). Circulating, cell-free micro-RNA profiles reflect discordant development of dementia in monozygotic twins. Journal of Alzheimer's Disease, 63, 591-601. https://doi.org/10.3233/JAD-171163

Miller, J. A., Cai, C., Langfelder, P., Geschwind, D. H., Kurian, S. M., Salomon, D. R., & Horvath, S. (2011). Strategies for aggregating gene expression data: The collapseRows R function. BMC Bioinformatics, 12, 322. https://doi.org/10.1186/1471-2105-12-322

Nagaraj, S., Laskowska-Kaszub, K., Dębski, K. J., Wojsiat, J., Dąbrowski, M., Gabryelewicz, T., Kuźnicki, J., & Wojda, U. (2017). Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer's disease patients from non-demented subjects. Oncotarget, 8, 16122-16143. https://doi.org/10.18632/oncotarget.15109

Nie, C., Sun, Y., Zhen, H., Guo, M., Ye, J., Liu, Z., Yang, Y., & Zhang, X. (2020). Differential expression of plasma Exo-miRNA in neurodegenerative diseases by next-generation sequencing. Frontiers in Neuroscience, 14, 438. https://doi.org/10.3389/fnins.2020.00438

Noren Hooten, N., Abdelmohsen, K., Gorospe, M., Ejiogu, N., Zonderman, A. B., & Evans, M. K. (2010). microRNA expression patterns reveal differential expression of target genes with age. PLoS One, 5, e10724. https://doi.org/10.1371/journal.pone.0010724

Nowakowski, T. J., Rani, N., Golkaram, M., Zhou, H. R., Alvarado, B., Huch, K., West, J. A., Leyrat, A., Pollen, A. A., Kriegstein, A. R., Petzold, L. R., & Kosik, K. S. (2018). Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nature Neuroscience, 21, 1784-1792. https://doi.org/10.1038/s41593-018-0265-3

Palasca, O., Santos, A., Stolte, C., Gorodkin, J., & Jensen, L. J. (2018). TISSUES 2.0: An integrative web resource on mammalian tissue expression. Database (Oxford), 2018, bay028. https://doi.org/10.1093/database/bay028

Pao, P. C., Patnaik, D., Watson, L. A., Gao, F., Pan, L., Wang, J., Adaikkan, C., Penney, J., Cam, H. P., Huang, W. C., Pantano, L., Lee, A., Nott, A., Phan, T. X., Gjoneska, E., Elmsaouri, S., Haggarty, S. J., & Tsai, L. H. (2020). HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. Nature Communications, 11, 2484. https://doi.org/10.1038/s41467-020-16361-y

Pathan, M., Fonseka, P., Chitti, S. V., Kang, T., Sanwlani, R., van Deun, J., Hendrix, A., & Mathivanan, S. (2019). Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Research, 47, D516-D519. https://doi.org/10.1093/nar/gky1029

Paudel, B., Jeong, S.-Y., Martinez, C. P., Rickman, A., Haluck-Kangas, A., Bartom, E. T., Fredricksen, K., Affaneh, A., Kessler, J. A., Mazzulli, J. R., Murmann, A. E., Rogalski, E., Geula, C., Ferreira, A., Heckmann, B. L., Green, D. R., Sadleir, K. R., Vassar, R., & Peter, M. E. (2023). Death induced by survival gene elimination (DISE) contributes to neurotoxicity in Alzheimer's disease. BioRxiv. https://doi.org/10.1101/2022.09.08.507157

Querfurth, H. W., Wijsman, E. M., St George-Hyslop, P. H., & Selkoe, D. J. (1995). Beta APP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer's disease-1 family. Brain Research. Molecular Brain Research, 28, 319-337. https://doi.org/10.1016/0169-328x(94)00224-3

Raheja, R., Regev, K., Healy, B. C., Mazzola, M. A., Beynon, V., von Glehn, F., Paul, A., Diaz-Cruz, C., Gholipour, T., Glanz, B. I., Kivisakk, P., Chitnis, T., Weiner, H. L., Berry, J. D., & Gandhi, R. (2018). Correlating serum micrornas and clinical parameters in amyotrophic lateral sclerosis. Muscle & Nerve, 58, 261-269. https://doi.org/10.1002/mus.26106

Reddy, P. H., et al. (2017). MicroRNAs, aging, cellular senescence, and Alzheimer's disease. Progress in Molecular Biology and Translational Science, 146, 127-171. https://doi.org/10.1016/bs.pmbts.2016.12.009

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47. https://doi.org/10.1093/nar/gkv007

Rodriguez-Rodriguez, E., et al. (2009). Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer's disease risk. Brain Research, 1280, 166-171. https://doi.org/10.1016/j.brainres.2009.05.019

Rovelet-Lecrux, A., Hannequin, D., Raux, G., Meur, N. L., Laquerrière, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., Dubas, F., Frebourg, T., & Campion, D. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genetics, 38, 24-26. https://doi.org/10.1038/ng1718

Sardar Sinha, M., Ansell-Schultz, A., Civitelli, L., Hildesjö, C., Larsson, M., Lannfelt, L., Ingelsson, M., & Hallbeck, M. (2018). Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathologica, 136, 41-56. https://doi.org/10.1007/s00401-018-1868-1

Schulz, J., Takousis, P., Wohlers, I., Itua, I. O. G., Dobricic, V., Rücker, G., Binder, H., Middleton, L., Ioannidis, J. P. A., Perneczky, R., Bertram, L., & Lill, C. M. (2019). Meta-analyses identify differentially expressed micrornas in Parkinson's disease. Annals of Neurology, 85, 835-851. https://doi.org/10.1002/ana.25490

Seyfried, N. T., Dammer, E. B., Swarup, V., Nandakumar, D., Duong, D. M., Yin, L., Deng, Q., Nguyen, T., Hales, C. M., Wingo, T., Glass, J., Gearing, M., Thambisetty, M., Troncoso, J. C., Geschwind, D. H., Lah, J. J., & Levey, A. I. (2017). A multi-network approach identifies protein-specific Co-expression in asymptomatic and symptomatic Alzheimer's disease. Cell Systems, 4, 60-72 e64. https://doi.org/10.1016/j.cels.2016.11.006

Sheardova, K., Vyhnalek, M., Nedelska, Z., Laczo, J., Andel, R., Marciniak, R., Cerman, J., Lerch, O., & Hort, J. (2019). Czech brain aging study (CBAS): Prospective multicentre cohort study on risk and protective factors for dementia in The Czech Republic. BMJ Open, 9, e030379. https://doi.org/10.1136/bmjopen-2019-030379

Sleegers, K., Brouwers, N., Gijselinck, I., Theuns, J., Goossens, D., Wauters, J., del-Favero, J., Cruts, M., Duijn, C. M., & Broeckhoven, C. V. (2006). APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain, 129, 2977-2983. https://doi.org/10.1093/brain/awl203

Smyth, G. K., Michaud, J., & Scott, H. S. (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics, 21, 2067-2075. https://doi.org/10.1093/bioinformatics/bti270

Sproviero, D., Gagliardi, S., Zucca, S., Arigoni, M., Giannini, M., Garofalo, M., Olivero, M., Dell’Orco, M., Pansarasa, O., Bernuzzi, S., Avenali, M., Cotta Ramusino, M., Diamanti, L., Minafra, B., Perini, G., Zangaglia, R., Costa, A., Ceroni, M., Perrone-Bizzozero, N. I., … Cereda, C. (2021). Different miRNA profiles in plasma derived small and large extracellular vesicles from patients with neurodegenerative diseases. International Journal of Molecular Sciences, 22, 1-17. https://doi.org/10.3390/ijms22052737

Takahashi, I., Hama, Y., Matsushima, M., Hirotani, M., Kano, T., Hohzen, H., Yabe, I., Utsumi, J., & Sasaki, H. (2015). Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Molecular Brain, 8, 67. https://doi.org/10.1186/s13041-015-0161-7

Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T. N., Winnay, J. N., Garcia-Martin, R., Grinspoon, S. K., Gorden, P., & Kahn, C. R. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542, 450-455. https://doi.org/10.1038/nature21365

Timmons, L., Tabara, H., Mello, C. C., & Fire, A. Z. (2003). Inducible systemic RNA silencing in Caenorhabditis elegans. Molecular Biology of the Cell, 14, 2972-2983. https://doi.org/10.1091/mbc.e03-01-0858

Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., Martinez-Herrera, D. J., Pascual-Montano, A., Mittelbrunn, M., & Sánchez-Madrid, F. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://doi.org/10.1038/ncomms3980

Wang, J., Vasaikar, S., Shi, Z., Greer, M., & Zhang, B. (2017). WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Research, 45, W130-W137. https://doi.org/10.1093/nar/gkx356

Wang, Y., Balaji, V., Kaniyappan, S., Krüger, L., Irsen, S., Tepper, K., Chandupatla, R. R., Maetzler, W., Schneider, A., Mandelkow, E., & Mandelkow, E. M. (2017). The release and trans-synaptic transmission of tau via exosomes. Molecular Neurodegeneration, 12, 5. https://doi.org/10.1186/s13024-016-0143-y

Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., How Huang, K., Jen Lee, M., Galas, D. J., & Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clinical Chemistry, 56, 1733-1741. https://doi.org/10.1373/clinchem.2010.147405

Winston, C. N., Aulston, B., Rockenstein, E. M., Adame, A., Prikhodko, O., Dave, K. N., Mishra, P., Rissman, R. A., & Yuan, S. H. (2019). Neuronal exosome-derived human tau is toxic to recipient mouse neurons in vivo. Journal of Alzheimer's Disease, 67, 541-553. https://doi.org/10.3233/JAD-180776

Wu, Q., Ye, X., Xiong, Y., Zhu, H., Miao, J., Zhang, W., & Wan, J. (2016). The protective role of microRNA-200c in Alzheimer's disease pathologies is induced by Beta amyloid-triggered endoplasmic reticulum stress. Frontiers in Molecular Neuroscience, 9, 140. https://doi.org/10.3389/fnmol.2016.00140

Xu, H., Liu, X., Li, W., Xi, Y., Su, P., Meng, B., Shao, X., Tang, B., Yang, Q., & Mao, Z. (2021). p38 MAPK-mediated loss of nuclear RNase III enzyme drosha underlies amyloid beta-induced neuronal stress in Alzheimer's disease. Aging Cell, 20, e13434. https://doi.org/10.1111/acel.13434

Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(1), 1-43. https://doi.org/10.2202/1544-6115.1128

Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C., & Cai, D. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548, 52-57. https://doi.org/10.1038/nature23282

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...