Effect of targeted coagulopathy management and 5% albumin as volume replacement therapy during lung transplantation on allograft function: a secondary analysis of a randomized clinical trial
Language English Country England, Great Britain Media electronic
Document type Randomized Controlled Trial, Journal Article
PubMed
36894877
PubMed Central
PMC9996868
DOI
10.1186/s12890-023-02372-0
PII: 10.1186/s12890-023-02372-0
Knihovny.cz E-resources
- Keywords
- 5% albumin, Anesthetic management, Lung transplantation, Rotational thromboelastometry, Volume replacement therapy,
- MeSH
- Allografts MeSH
- Hemorrhage MeSH
- Humans MeSH
- Primary Graft Dysfunction * MeSH
- Reperfusion Injury * MeSH
- Lung Transplantation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
BACKGROUND: Primary graft dysfunction (PGD) after lung transplantation (LuTx) contributes substantially to early postoperative morbidity. Both intraoperative transfusion of a large amount of blood products during the surgery and ischemia-reperfusion injury after allograft implantation play an important role in subsequent PGD development. METHODS: We have previously reported a randomized clinical trial of 67 patients where point of care (POC) targeted coagulopathy management and intraoperative administration of 5% albumin led to significant reduction of blood loss and blood product consumption during the lung transplantation surgery. A secondary analysis of the randomized clinical trial evaluating the effect of targeted coagulopathy management and intraoperative administration of 5% albumin on early lung allograft function after LuTx and 1-year survival was performed. RESULTS: Compared to the patients in the control (non-POC) group, those in study (POC) group showed significantly superior graft function, represented by the Horowitz index (at 72 h after transplantation 402.87 vs 308.03 with p < 0.001, difference between means: 94.84, 95% CI: 60.18-129.51). Furthermore, the maximum doses of norepinephrine administered during first 24 h were significantly lower in the POC group (0.193 vs 0.379 with p < 0.001, difference between the means: 0.186, 95% CI: 0.105-0.267). After dichotomization of PGD (0-1 vs 2-3), significant difference between the non-POC and POC group occurred only at time point 72, when PGD grade 2-3 developed in 25% (n = 9) and 3.2% (n = 1), respectively (p = 0.003). The difference in 1-year survival was not statistically significant (10 patients died in non-POC group vs. 4 patients died in POC group; p = 0.17). CONCLUSIONS: Utilization of a POC targeted coagulopathy management combined with Albumin 5% as primary resuscitative fluid may improve early lung allograft function, provide better circulatory stability during the early post-operative period, and have potential to decrease the incidence of PGD without negative effect on 1-year survival. TRIAL REGISTRATION: This clinical trial was registered at ClinicalTrials.gov (NCT03598907).
See more in PubMed
Verleden GM, Glanville AR, Lease ED, Fisher AJ, Calabrese F, Corris PA, et al. Chronic lung allograft dysfunction: Definition, diagnostic criteria, and approaches to treatment-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant. 2019;38(5):493–503. doi: 10.1016/j.healun.2019.03.009. PubMed DOI
Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33(2):127–133. doi: 10.1016/j.healun.2013.10.022. PubMed DOI
Tikkanen JM, Singer LG, Kim SJ, Li Y, Binnie M, Chaparro C, et al. De Novo DQ Donor-Specific Antibodies Are Associated with Chronic Lung Allograft Dysfunction after Lung Transplantation. Am J Respir Crit Care Med. 2016;194(5):596–606. doi: 10.1164/rccm.201509-1857OC. PubMed DOI
DerHovanessian A, Wallace WD, Lynch JP, 3rd, Belperio JA, Weigt SS. Chronic lung allograft dysfunction: evolving concepts and therapies. Semin Respir Crit Care Med. 2018;39(2):155–171. doi: 10.1055/s-0037-1618567. PubMed DOI
Verleden SE, Vos R, Vanaudenaerde BM, Verleden GM. Chronic lung allograft dysfunction phenotypes and treatment. J Thorac Dis. 2017;9(8):2650–2659. doi: 10.21037/jtd.2017.07.81. PubMed DOI PMC
Snell GI, Yusen RD, Weill D, Strueber M, Garrity E, Reed A, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, part I: Definition and grading-A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1097–1103. doi: 10.1016/j.healun.2017.07.021. PubMed DOI
Christie JD, Kotloff RM, Ahya VN, Tino G, Pochettino A, Gaughan C, et al. The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med. 2005;171(11):1312–1316. doi: 10.1164/rccm.200409-1243OC. PubMed DOI PMC
Cantu E, Diamond JM, Suzuki Y, Lasky J, Schaufler C, Lim B, et al. Quantitative evidence for revising the definition of primary graft dysfunction after lung transplant. Am J Respir Crit Care Med. 2018;197(2):235–243. doi: 10.1164/rccm.201706-1140OC. PubMed DOI PMC
Whitson BA, Prekker ME, Herrington CS, Whelan TP, Radosevich DM, Hertz MI, et al. Primary graft dysfunction and long-term pulmonary function after lung transplantation. J Heart Lung Transplant. 2007;26(10):1004–1011. doi: 10.1016/j.healun.2007.07.018. PubMed DOI
Martin AK, Yalamuri SM, Wilkey BJ, Kolarczyk L, Fritz AV, Jayaraman A, et al. The Impact of anesthetic management on perioperative outcomes in lung transplantation. J Cardiothorac Vasc Anesth. 2020;34(6):1669–1680. doi: 10.1053/j.jvca.2019.08.037. PubMed DOI
Weber D, Cottini SR, Locher P, Wenger U, Stehberger PA, Fasshauer M, et al. Association of intraoperative transfusion of blood products with mortality in lung transplant recipients. Perioper Med (Lond) 2013;2(1):20. doi: 10.1186/2047-0525-2-20. PubMed DOI PMC
Geube MA, Perez-Protto SE, McGrath TL, Yang D, Sessler DI, Budev MM, et al. Increased intraoperative fluid administration is associated with severe primary graft dysfunction after lung transplantation. Anesth Analg. 2016;122(4):1081. doi: 10.1213/ANE.0000000000001163. PubMed DOI PMC
Smith I, Pearse BL, Faulke DJ, Naidoo R, Nicotra L, Hopkins P, et al. Targeted Bleeding Management Reduces the Requirements for Blood Component Therapy in Lung Transplant Recipients. J Cardiothorac Vasc Anesth. 2017;31(2):426–433. doi: 10.1053/j.jvca.2016.06.027. PubMed DOI
Jonas J, Durila M, Malosek M, Maresova D, Stulik J, Barna M, et al. Usefulness of perioperative rotational thrombelastometry during scoliosis surgery in children. J Neurosurg Spine. 2020;32(6):865–870. doi: 10.3171/2019.11.SPINE191137. PubMed DOI
Karkouti K, Callum J, Wijeysundera DN, Rao V, Crowther M, Grocott HP, et al. Point-of-Care Hemostatic Testing in Cardiac Surgery: A Stepped-Wedge Clustered Randomized Controlled Trial. Circulation. 2016;134(16):1152–1162. doi: 10.1161/CIRCULATIONAHA.116.023956. PubMed DOI
Abeysundara L, Mallett SV, Clevenger B. Point-of-Care Testing in Liver Disease and Liver Surgery. Semin Thromb Hemost. 2017;43(4):407–415. doi: 10.1055/s-0037-1599154. PubMed DOI
Donohue CI, Mallett SV. Reducing transfusion requirements in liver transplantation. World J Transplant. 2015;5(4):165–182. doi: 10.5500/wjt.v5.i4.165. PubMed DOI PMC
Durila M, Vajter J, Garaj M, Pollert L, Berousek J, Vachtenheim J, Jr, et al. Rotational thromboelastometry reduces blood loss and blood product usage after lung transplantation. J Heart Lung Transplant. 2021;40(7):631–641. doi: 10.1016/j.healun.2021.03.020. PubMed DOI
Uhlig C, Silva PL, Deckert S, Schmitt J, de Abreu MG. Albumin versus crystalloid solutions in patients with the acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care. 2014;18(1):R10. doi: 10.1186/cc13187. PubMed DOI PMC
Kingeter AJ, Raghunathan K, Munson SH, Hayashida DK, Zhang X, Iyengar S, et al. Association between albumin administration and survival in cardiac surgery: a retrospective cohort study. Can J Anesth/Journal canadien d'anesthésie. 2018;65(11):1218–1227. doi: 10.1007/s12630-018-1181-4. PubMed DOI
Martin AK, Harrison BA, Fritz AV, Landolfo KP, Makey IA, Sareyyupoglu B, et al. Intraoperative management of a hybrid extracorporeal membrane oxygenation circuit for lung transplantation. J Card Surg. 2020;35(12):3560–3563. doi: 10.1111/jocs.15029. PubMed DOI
Hoetzenecker K, Benazzo A, Stork T, Sinn K, Schwarz S, Schweiger T, et al. Bilateral lung transplantation on intraoperative extracorporeal membrane oxygenator: An observational study. J Thorac Cardiovasc Surg. 2020;160(1):320–7 e1. doi: 10.1016/j.jtcvs.2019.10.155. PubMed DOI
de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511. doi: 10.1164/rccm.200207-670SO. PubMed DOI
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1114–1120. doi: 10.1016/j.healun.2017.07.014. PubMed DOI PMC
Sladden TM, Yerkovich S, Grant M, Zhang F, Liu X, Trotter M, et al. Endothelial glycocalyx shedding predicts donor organ acceptability and is associated with primary graft dysfunction in lung transplant recipients. Transplantation. 2019;103(6):1277–1285. doi: 10.1097/TP.0000000000002539. PubMed DOI
Thomas J, Kostousov V, Teruya J. Bleeding and thrombotic complications in the use of extracorporeal membrane oxygenation. Semin Thromb Hemost. 2018;44(1):20–29. doi: 10.1055/s-0037-1606179. PubMed DOI
Diamond JM, Arcasoy S, Kennedy CC, Eberlein M, Singer JP, Patterson GM, et al. Report of the International Society for Heart and Lung Transplantation Working Group on Primary Lung Graft Dysfunction, part II: Epidemiology, risk factors, and outcomes-A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1104–1113. doi: 10.1016/j.healun.2017.07.020. PubMed DOI
Christie JD, Shah CV, Kawut SM, Mangalmurti N, Lederer DJ, Sonett JR, et al. Plasma levels of receptor for advanced glycation end products, blood transfusion, and risk of primary graft dysfunction. Am J Respir Crit Care Med. 2009;180(10):1010–1015. doi: 10.1164/rccm.200901-0118OC. PubMed DOI PMC
Goodwin J, Tinckam K, denHollander N, Haroon A, Keshavjee S, Cserti-Gazdewich CM. Transfusion-related acute lung injury (TRALI) in graft by blood donor antibodies against host leukocytes. J Heart Lung Transplant. 2010;29(9):1067–1070. doi: 10.1016/j.healun.2010.04.019. PubMed DOI
Diamond JM, Lee JC, Kawut SM, Shah RJ, Localio AR, Bellamy SL, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2013;187(5):527–534. doi: 10.1164/rccm.201210-1865OC. PubMed DOI PMC
Ong LP, Thompson E, Sachdeva A, Ramesh BC, Muse H, Wallace K, et al. Allogeneic blood transfusion in bilateral lung transplantation: impact on early function and mortality. Eur J Cardiothorac Surg. 2016;49(2):668–74. doi: 10.1093/ejcts/ezv155. PubMed DOI
Klanderman RB, Bosboom JJ, Korsten H, Zeiler T, Musson REA, Veelo DP, et al. Colloid osmotic pressure of contemporary and novel transfusion products. Vox Sang. 2020;115(8):664–675. doi: 10.1111/vox.12932. PubMed DOI PMC
Pena JJ, Bottiger BA, Miltiades AN. Perioperative Management of Bleeding and Transfusion for Lung Transplantation. Semin Cardiothorac Vasc Anesth. 2020;24(1):74–83. doi: 10.1177/1089253219869030. PubMed DOI
Artigas A, Wernerman J, Arroyo V, Vincent JL, Levy M. Role of albumin in diseases associated with severe systemic inflammation: Pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J Crit Care. 2016;33:62–70. doi: 10.1016/j.jcrc.2015.12.019. PubMed DOI
Vincent J-L, Russell JA, Jacob M, Martin G, Guidet B, Wernerman J, et al. Albumin administration in the acutely ill: what is new and where next? Crit Care. 2014;18(4):1–10. doi: 10.1186/cc13991. PubMed DOI PMC
Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–784. doi: 10.1111/anae.12661. PubMed DOI
Shin CH, Long DR, McLean D, Grabitz SD, Ladha K, Timm FP, et al. Effects of Intraoperative Fluid Management on Postoperative Outcomes: A Hospital Registry Study. Ann Surg. 2018;267(6):1084–1092. doi: 10.1097/SLA.0000000000002220. PubMed DOI
Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. Crit Care. 2017;21(1):1–10. doi: 10.1186/s13054-017-1745-7. PubMed DOI PMC
Mendes RS, Oliveira MV, Padilha GA, Rocha NN, Santos CL, Maia LA, et al. Effects of crystalloid, hyper-oncotic albumin, and iso-oncotic albumin on lung and kidney damage in experimental acute lung injury. Respir Res. 2019;20(1):155. doi: 10.1186/s12931-019-1115-x. PubMed DOI PMC
Moreno Garijo J, Cypel M, McRae K, Machuca T, Cunningham V, Slinger P. The Evolving Role of Extracorporeal Membrane Oxygenation in Lung Transplantation: Implications for Anesthetic Management. J Cardiothorac Vasc Anesth. 2019;33(7):1995–2006. doi: 10.1053/j.jvca.2018.10.007. PubMed DOI
Martin AK, Fritz AV, Wilkey BJ. Anesthetic management of lung transplantation: impact of presenting disease. Curr Opin Anaesthesiol. 2020;33(1):43–49. doi: 10.1097/ACO.0000000000000805. PubMed DOI
Fessler J, Davignon M, Sage E, Roux A, Cerf C, Feliot E, et al. Intraoperative implications of the recipients' disease for double-lung transplantation. J Cardiothorac Vasc Anesth. 2021;35(2):530–538. doi: 10.1053/j.jvca.2020.07.039. PubMed DOI
ClinicalTrials.gov
NCT03598907