Increased Intracellular Free Zinc Has Pleiotropic Effects on Doxorubicin-Induced Cytotoxicity in hiPCS-CMs Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio Program, research area DIAG
Charles University
PubMed
36901950
PubMed Central
PMC10003200
DOI
10.3390/ijms24054518
PII: ijms24054518
Knihovny.cz E-zdroje
- Klíčová slova
- MAPK, doxorubicin, hiPCS-CMs, senescence, zinc,
- MeSH
- buněčná smrt MeSH
- doxorubicin farmakologie MeSH
- indukované pluripotentní kmenové buňky * MeSH
- kardiomyocyty metabolismus MeSH
- lidé MeSH
- zinek * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin MeSH
- zinek * MeSH
(1) the mechanisms and outcomes of doxorubicin (DOX)-dependent toxicity upon changed intracellular zinc (Zn) concentrations in the cardiomyocytes obtained from human-induced pluripotent stem cells (hiPCS-CMs) were investigated; (2) cells exposed to the DOX were pretreated or cotreated with zinc pyrythione (ZnPyr) and various cellular endpoints and mechanisms were analyzed via cytometric methods; (3) both DOX concentrations (0.3 and 1 µM) induced a concentration-dependent loss of viability, an activation of autophagy, cell death, and the appearance of senescence. These phenotypes were preceded by an oxidative burst, DNA damage, and a loss of mitochondrial and lysosomal integrity. Furthermore, in DOX-treated cells, proinflammatory and stress kinase signaling (in particular, JNK and ERK) were upregulated upon the loss of free intracellular Zn pools. Increased free Zn concentrations proved to have both inhibitory and stimulatory effects on the investigated DOX-related molecular mechanisms, as well as on signaling pathways on the resulting cell fates; and (4) free intracellular Zn pools, their status, and their elevation might have, in a specific context, a pleiotropic impact upon DOX-dependent cardiotoxicity.
Zobrazit více v PubMed
Sun J., Wei Q., Zhou Y., Wang J., Liu Q., Xu H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol. 2017;11((Suppl. S5)):87. doi: 10.1186/s12918-017-0464-7. PubMed DOI PMC
van der Zanden S.Y., Qiao X., Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021;288:6095–6111. doi: 10.1111/febs.15583. PubMed DOI PMC
Volkova M., Russell R., 3rd Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2011;7:214–220. doi: 10.2174/157340311799960645. PubMed DOI PMC
Zhang S., Liu X., Bawa-Khalfe T., Lu L.S., Lyu Y.L., Liu L.F., Yeh E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012;18:1639–1642. doi: 10.1038/nm.2919. PubMed DOI
Simunek T., Sterba M., Popelova O., Adamcova M., Hrdina R., Gersl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 2009;61:154–171. doi: 10.1016/S1734-1140(09)70018-0. PubMed DOI
Ghigo A., Li M., Hirsch E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta. 2016;1863:1916–1925. doi: 10.1016/j.bbamcr.2016.01.021. PubMed DOI
Belmonte F., Das S., Sysa-Shah P., Sivakumaran V., Stanley B., Guo X., Paolocci N., Aon M.A., Nagane M., Kuppusamy P., et al. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H1271–H1280. doi: 10.1152/ajpheart.00517.2014. PubMed DOI PMC
Ma Y., Zhang X., Bao H., Mi S., Cai W., Yan H., Wang Q., Wang Z., Yan J., Fan G.C., et al. Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS ONE. 2012;7:e40763. doi: 10.1371/annotation/e82f77a8-3d29-44be-a9ef-7abc6c7e584a. PubMed DOI PMC
Gratia S., Kay L., Potenza L., Seffouh A., Novel-Chate V., Schnebelen C., Sestili P., Schlattner U., Tokarska-Schlattner M. Inhibition of AMPK signalling by doxorubicin: At the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc. Res. 2012;95:290–299. doi: 10.1093/cvr/cvs134. PubMed DOI
Vacchi-Suzzi C., Bauer Y., Berridge B.R., Bongiovanni S., Gerrish K., Hamadeh H.K., Letzkus M., Lyon J., Moggs J., Paules R.S., et al. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS ONE. 2012;7:e40395. doi: 10.1371/journal.pone.0040395. PubMed DOI PMC
Maejima Y., Adachi S., Ito H., Hirao K., Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7:125–136. doi: 10.1111/j.1474-9726.2007.00358.x. PubMed DOI
Bartlett J.J., Trivedi P.C., Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. J. Mol. Cell Cardiol. 2017;104:1–8. doi: 10.1016/j.yjmcc.2017.01.007. PubMed DOI
Christidi E., Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12:339. doi: 10.1038/s41419-021-03614-x. PubMed DOI PMC
MacDonald R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000;130((Suppl. S5)):1500S–1508S. doi: 10.1093/jn/130.5.1500S. PubMed DOI
Roohani N., Hurrell R., Kelishadi R., Schulin R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013;18:144–157. PubMed PMC
King J.C., Shames D.M., Woodhouse L.R. Zinc homeostasis in humans. J. Nutr. 2000;130((Suppl. S5)):1360S–1366S. doi: 10.1093/jn/130.5.1360S. PubMed DOI
Maret W. The redox biology of redox-inert zinc ions. Free Radic. Biol. Med. 2019;134:311–326. doi: 10.1016/j.freeradbiomed.2019.01.006. PubMed DOI
Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2001;14:331–341. doi: 10.1023/A:1012905406548. PubMed DOI
Tudor R., Zalewski P.D., Ratnaike R.N. Zinc in health and chronic disease. J. Nutr. Health Aging. 2005;9:45–51. PubMed
Frederickson C.J., Suh S.W., Silva D., Thompson R.B. Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr. 2000;130((Suppl. S5)):1471S–1483S. doi: 10.1093/jn/130.5.1471S. PubMed DOI
Prasad A.S., Kucuk O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002;21:291–295. doi: 10.1023/A:1021215111729. PubMed DOI
Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018;39:1120–1132. doi: 10.1038/aps.2018.25. PubMed DOI PMC
Sritharan S., Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021;278:119527. doi: 10.1016/j.lfs.2021.119527. PubMed DOI
Mitry M.A., Laurent D., Keith B.L., Sira E., Eisenberg C.A., Eisenberg L.M., Joshi S., Gupte S., Edwards J.G. Accelerated cardiomyocyte senescence contributes to late-onset doxorubicin-induced cardiotoxicity. Am. J. Physiol. Cell Physiol. 2020;318:C380–C391. doi: 10.1152/ajpcell.00073.2019. PubMed DOI PMC
Hasinoff B.B., Patel D., Wu X. Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib. Cardiovasc. Toxicol. 2017;17:237–250. doi: 10.1007/s12012-016-9378-7. PubMed DOI
Louisse J., Wust R.C.I., Pistollato F., Palosaari T., Barilari M., Macko P., Bremer S., Prieto P. Assessment of acute and chronic toxicity of doxorubicin in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol. In Vitro. 2017;42:182–190. doi: 10.1016/j.tiv.2017.04.023. PubMed DOI
Li D.L., Wang Z.V., Ding G., Tan W., Luo X., Criollo A., Xie M., Jiang N., May H., Kyrychenko V., et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133:1668–1687. doi: 10.1161/CIRCULATIONAHA.115.017443. PubMed DOI PMC
Carvalho F.S., Burgeiro A., Garcia R., Moreno A.J., Carvalho R.A., Oliveira P.J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev. 2014;34:106–135. doi: 10.1002/med.21280. PubMed DOI
Koleini N., Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8:46663–46680. doi: 10.18632/oncotarget.16944. PubMed DOI PMC
Sardao V.A., Oliveira P.J., Holy J., Oliveira C.R., Wallace K.B. Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biol. Toxicol. 2009;25:227–243. doi: 10.1007/s10565-008-9070-1. PubMed DOI
Nozaki N., Shishido T., Takeishi Y., Kubota I. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation. 2004;110:2869–2874. doi: 10.1161/01.CIR.0000146889.46519.27. PubMed DOI
Cunha-Oliveira T., Ferreira L.L., Coelho A.R., Deus C.M., Oliveira P.J. Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol. Appl. Pharmacol. 2018;348:1–13. doi: 10.1016/j.taap.2018.04.009. PubMed DOI
Ludke A., Akolkar G., Ayyappan P., Sharma A.K., Singal P.K. Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C. PLoS ONE. 2017;12:e0179452. doi: 10.1371/journal.pone.0179452. PubMed DOI PMC
Huang P., Bai L., Liu L., Fu J., Wu K., Liu H., Liu Y., Qi B., Qi B. Redd1 knockdown prevents doxorubicin-induced cardiac senescence. Aging (Albany NY) 2021;13:13788–13806. doi: 10.18632/aging.202972. PubMed DOI PMC
Spallarossa P., Altieri P., Barisione C., Passalacqua M., Aloi C., Fugazza G., Frassoni F., Podesta M., Canepa M., Ghigliotti G., et al. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE. 2010;5:e15583. doi: 10.1371/journal.pone.0015583. PubMed DOI PMC
Altieri P., Barisione C., Lazzarini E., Garuti A., Bezante G.P., Canepa M., Spallarossa P., Tocchetti C.G., Bollini S., Brunelli C., et al. Testosterone Antagonizes Doxorubicin-Induced Senescence of Cardiomyocytes. J. Am. Heart Assoc. 2016;5:e002328. doi: 10.1161/JAHA.115.002383. PubMed DOI PMC
Altieri P., Spallarossa P., Barisione C., Garibaldi S., Garuti A., Fabbi P., Ghigliotti G., Brunelli C. Inhibition of doxorubicin-induced senescence by PPARdelta activation agonists in cardiac muscle cells: Cooperation between PPARdelta and Bcl6. PLoS ONE. 2012;7:e46126. doi: 10.1371/journal.pone.0046126. PubMed DOI PMC
Cappetta D., Esposito G., Piegari E., Russo R., Ciuffreda L.P., Rivellino A., Berrino L., Rossi F., De Angelis A., Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int. J. Cardiol. 2016;205:99–110. doi: 10.1016/j.ijcard.2015.12.008. PubMed DOI
Jing L., Li L., Zhao J., Zhao J., Sun Z., Peng S. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica. 2016;46:715–725. doi: 10.3109/00498254.2015.1110760. PubMed DOI
Maret W. Molecular aspects of human cellular zinc homeostasis: Redox control of zinc potentials and zinc signals. Biometals. 2009;22:149–157. doi: 10.1007/s10534-008-9186-z. PubMed DOI