Increased Intracellular Free Zinc Has Pleiotropic Effects on Doxorubicin-Induced Cytotoxicity in hiPCS-CMs Cells

. 2023 Feb 24 ; 24 (5) : . [epub] 20230224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36901950

Grantová podpora
Cooperatio Program, research area DIAG Charles University

(1) the mechanisms and outcomes of doxorubicin (DOX)-dependent toxicity upon changed intracellular zinc (Zn) concentrations in the cardiomyocytes obtained from human-induced pluripotent stem cells (hiPCS-CMs) were investigated; (2) cells exposed to the DOX were pretreated or cotreated with zinc pyrythione (ZnPyr) and various cellular endpoints and mechanisms were analyzed via cytometric methods; (3) both DOX concentrations (0.3 and 1 µM) induced a concentration-dependent loss of viability, an activation of autophagy, cell death, and the appearance of senescence. These phenotypes were preceded by an oxidative burst, DNA damage, and a loss of mitochondrial and lysosomal integrity. Furthermore, in DOX-treated cells, proinflammatory and stress kinase signaling (in particular, JNK and ERK) were upregulated upon the loss of free intracellular Zn pools. Increased free Zn concentrations proved to have both inhibitory and stimulatory effects on the investigated DOX-related molecular mechanisms, as well as on signaling pathways on the resulting cell fates; and (4) free intracellular Zn pools, their status, and their elevation might have, in a specific context, a pleiotropic impact upon DOX-dependent cardiotoxicity.

Zobrazit více v PubMed

Sun J., Wei Q., Zhou Y., Wang J., Liu Q., Xu H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol. 2017;11((Suppl. S5)):87. doi: 10.1186/s12918-017-0464-7. PubMed DOI PMC

van der Zanden S.Y., Qiao X., Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021;288:6095–6111. doi: 10.1111/febs.15583. PubMed DOI PMC

Volkova M., Russell R., 3rd Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2011;7:214–220. doi: 10.2174/157340311799960645. PubMed DOI PMC

Zhang S., Liu X., Bawa-Khalfe T., Lu L.S., Lyu Y.L., Liu L.F., Yeh E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012;18:1639–1642. doi: 10.1038/nm.2919. PubMed DOI

Simunek T., Sterba M., Popelova O., Adamcova M., Hrdina R., Gersl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 2009;61:154–171. doi: 10.1016/S1734-1140(09)70018-0. PubMed DOI

Ghigo A., Li M., Hirsch E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta. 2016;1863:1916–1925. doi: 10.1016/j.bbamcr.2016.01.021. PubMed DOI

Belmonte F., Das S., Sysa-Shah P., Sivakumaran V., Stanley B., Guo X., Paolocci N., Aon M.A., Nagane M., Kuppusamy P., et al. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H1271–H1280. doi: 10.1152/ajpheart.00517.2014. PubMed DOI PMC

Ma Y., Zhang X., Bao H., Mi S., Cai W., Yan H., Wang Q., Wang Z., Yan J., Fan G.C., et al. Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS ONE. 2012;7:e40763. doi: 10.1371/annotation/e82f77a8-3d29-44be-a9ef-7abc6c7e584a. PubMed DOI PMC

Gratia S., Kay L., Potenza L., Seffouh A., Novel-Chate V., Schnebelen C., Sestili P., Schlattner U., Tokarska-Schlattner M. Inhibition of AMPK signalling by doxorubicin: At the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc. Res. 2012;95:290–299. doi: 10.1093/cvr/cvs134. PubMed DOI

Vacchi-Suzzi C., Bauer Y., Berridge B.R., Bongiovanni S., Gerrish K., Hamadeh H.K., Letzkus M., Lyon J., Moggs J., Paules R.S., et al. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS ONE. 2012;7:e40395. doi: 10.1371/journal.pone.0040395. PubMed DOI PMC

Maejima Y., Adachi S., Ito H., Hirao K., Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7:125–136. doi: 10.1111/j.1474-9726.2007.00358.x. PubMed DOI

Bartlett J.J., Trivedi P.C., Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. J. Mol. Cell Cardiol. 2017;104:1–8. doi: 10.1016/j.yjmcc.2017.01.007. PubMed DOI

Christidi E., Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12:339. doi: 10.1038/s41419-021-03614-x. PubMed DOI PMC

MacDonald R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000;130((Suppl. S5)):1500S–1508S. doi: 10.1093/jn/130.5.1500S. PubMed DOI

Roohani N., Hurrell R., Kelishadi R., Schulin R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013;18:144–157. PubMed PMC

King J.C., Shames D.M., Woodhouse L.R. Zinc homeostasis in humans. J. Nutr. 2000;130((Suppl. S5)):1360S–1366S. doi: 10.1093/jn/130.5.1360S. PubMed DOI

Maret W. The redox biology of redox-inert zinc ions. Free Radic. Biol. Med. 2019;134:311–326. doi: 10.1016/j.freeradbiomed.2019.01.006. PubMed DOI

Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2001;14:331–341. doi: 10.1023/A:1012905406548. PubMed DOI

Tudor R., Zalewski P.D., Ratnaike R.N. Zinc in health and chronic disease. J. Nutr. Health Aging. 2005;9:45–51. PubMed

Frederickson C.J., Suh S.W., Silva D., Thompson R.B. Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr. 2000;130((Suppl. S5)):1471S–1483S. doi: 10.1093/jn/130.5.1471S. PubMed DOI

Prasad A.S., Kucuk O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002;21:291–295. doi: 10.1023/A:1021215111729. PubMed DOI

Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018;39:1120–1132. doi: 10.1038/aps.2018.25. PubMed DOI PMC

Sritharan S., Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021;278:119527. doi: 10.1016/j.lfs.2021.119527. PubMed DOI

Mitry M.A., Laurent D., Keith B.L., Sira E., Eisenberg C.A., Eisenberg L.M., Joshi S., Gupte S., Edwards J.G. Accelerated cardiomyocyte senescence contributes to late-onset doxorubicin-induced cardiotoxicity. Am. J. Physiol. Cell Physiol. 2020;318:C380–C391. doi: 10.1152/ajpcell.00073.2019. PubMed DOI PMC

Hasinoff B.B., Patel D., Wu X. Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib. Cardiovasc. Toxicol. 2017;17:237–250. doi: 10.1007/s12012-016-9378-7. PubMed DOI

Louisse J., Wust R.C.I., Pistollato F., Palosaari T., Barilari M., Macko P., Bremer S., Prieto P. Assessment of acute and chronic toxicity of doxorubicin in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol. In Vitro. 2017;42:182–190. doi: 10.1016/j.tiv.2017.04.023. PubMed DOI

Li D.L., Wang Z.V., Ding G., Tan W., Luo X., Criollo A., Xie M., Jiang N., May H., Kyrychenko V., et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133:1668–1687. doi: 10.1161/CIRCULATIONAHA.115.017443. PubMed DOI PMC

Carvalho F.S., Burgeiro A., Garcia R., Moreno A.J., Carvalho R.A., Oliveira P.J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev. 2014;34:106–135. doi: 10.1002/med.21280. PubMed DOI

Koleini N., Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8:46663–46680. doi: 10.18632/oncotarget.16944. PubMed DOI PMC

Sardao V.A., Oliveira P.J., Holy J., Oliveira C.R., Wallace K.B. Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biol. Toxicol. 2009;25:227–243. doi: 10.1007/s10565-008-9070-1. PubMed DOI

Nozaki N., Shishido T., Takeishi Y., Kubota I. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation. 2004;110:2869–2874. doi: 10.1161/01.CIR.0000146889.46519.27. PubMed DOI

Cunha-Oliveira T., Ferreira L.L., Coelho A.R., Deus C.M., Oliveira P.J. Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol. Appl. Pharmacol. 2018;348:1–13. doi: 10.1016/j.taap.2018.04.009. PubMed DOI

Ludke A., Akolkar G., Ayyappan P., Sharma A.K., Singal P.K. Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C. PLoS ONE. 2017;12:e0179452. doi: 10.1371/journal.pone.0179452. PubMed DOI PMC

Huang P., Bai L., Liu L., Fu J., Wu K., Liu H., Liu Y., Qi B., Qi B. Redd1 knockdown prevents doxorubicin-induced cardiac senescence. Aging (Albany NY) 2021;13:13788–13806. doi: 10.18632/aging.202972. PubMed DOI PMC

Spallarossa P., Altieri P., Barisione C., Passalacqua M., Aloi C., Fugazza G., Frassoni F., Podesta M., Canepa M., Ghigliotti G., et al. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE. 2010;5:e15583. doi: 10.1371/journal.pone.0015583. PubMed DOI PMC

Altieri P., Barisione C., Lazzarini E., Garuti A., Bezante G.P., Canepa M., Spallarossa P., Tocchetti C.G., Bollini S., Brunelli C., et al. Testosterone Antagonizes Doxorubicin-Induced Senescence of Cardiomyocytes. J. Am. Heart Assoc. 2016;5:e002328. doi: 10.1161/JAHA.115.002383. PubMed DOI PMC

Altieri P., Spallarossa P., Barisione C., Garibaldi S., Garuti A., Fabbi P., Ghigliotti G., Brunelli C. Inhibition of doxorubicin-induced senescence by PPARdelta activation agonists in cardiac muscle cells: Cooperation between PPARdelta and Bcl6. PLoS ONE. 2012;7:e46126. doi: 10.1371/journal.pone.0046126. PubMed DOI PMC

Cappetta D., Esposito G., Piegari E., Russo R., Ciuffreda L.P., Rivellino A., Berrino L., Rossi F., De Angelis A., Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int. J. Cardiol. 2016;205:99–110. doi: 10.1016/j.ijcard.2015.12.008. PubMed DOI

Jing L., Li L., Zhao J., Zhao J., Sun Z., Peng S. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica. 2016;46:715–725. doi: 10.3109/00498254.2015.1110760. PubMed DOI

Maret W. Molecular aspects of human cellular zinc homeostasis: Redox control of zinc potentials and zinc signals. Biometals. 2009;22:149–157. doi: 10.1007/s10534-008-9186-z. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...