Genetic Diversity Analysis of Brassica Yellows Virus Causing Aberrant Color Symptoms in Oilseed Rape
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
31960534
National Natural Science Foundation of China
JBGS [2021] 061
Jiangsu Seed Industry Revitalization "The open competition mechanism to select the best candi-dates" Project
BZ2020024 and TM01000044
TAČR-JSTD Bilateral (Czech-China) Co-Funding R&D Project
[2021]44
Guizhou Academy of Agricultural Sciences post-funded project of the NSFC
PubMed
36903869
PubMed Central
PMC10005696
DOI
10.3390/plants12051008
PII: plants12051008
Knihovny.cz E-zdroje
- Klíčová slova
- BrYV, TuYV, incidence, leaf color, oilseed rape, phylogenetic tree,
- Publikační typ
- časopisecké články MeSH
The emergence of brassica yellow virus (BrYV) has increasingly damaged crucifer crops in China in recent years. In 2020, a large number of oilseed rape in Jiangsu showed aberrant leaf color. A combined RNA-seq and RT-PCR analysis identified BrYV as the major viral pathogen. A subsequent field survey showed that the average incidence of BrYV was 32.04%. In addition to BrYV, turnip mosaic virus (TuMV) was also frequently detected. As a result, two near full-length BrYV isolates, BrYV-814NJLH and BrYV-NJ13, were cloned. Based on the newly obtained sequences and the reported BrYV and turnip yellow virus (TuYV) isolates, a phylogenetic analysis was performed, and it was found that all BrYV isolates share a common root with TuYV. Pairwise amino acid identity analysis revealed that both P2 and P3 were conserved in BrYV. Additionally, recombination analysis revealed seven recombinant events in BrYV as TuYV. We also attempted to determine BrYV infection by quantitative leaf color index, but no significant correlation was found between the two. Systemic observations indicated that BrYV-infected plants had different symptoms, such as no symptom, purple stem base and red old leaves. Overall, our work proves that BrYV is closely related to TuYV and could be considered as an epidemic strain for oilseed rape in Jiangsu.
College of Agronomy and Biotechnology China Agricultural University Beijing 100193 China
Guizhou Rapeseed Institute Guizhou Academy of Agricultural Sciences Guiyang 550008 China
Institute of Life Sciences Jiangsu University Zhenjiang 212013 China
Zobrazit více v PubMed
Stevens M., McGrann G.R.D., Clark B. Turnip yellows virus (syn Beet western yellows virus): An emerging threat to European oilseed rape production? HGCA Res. Rev. 2008;69:1–36.
Jones R.A.C., Coutts B.A., Hawkes J. Yield-limiting potential of Beet western yellows virus in Brassica napus. Aust. J. Agric. Res. 2007;58:788–801. doi: 10.1071/AR06391. DOI
Sõmera M., Fargette D., Hébrard E., Sarmiento C. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Solemoviridae 2021. J. Gen. Virol. 2021;102:001707. doi: 10.1099/jgv.0.001707. PubMed DOI PMC
Hackenberg D., Asare-Bediako E., Baker A., Walley P., Jenner C., Greer S., Bramham L., Batley J., Edwards D., Delourme R., et al. Identification and QTL mapping of resistance to Turnip yellows virus (TuYV) in oilseed rape, Brassica napus. Theor. Appl. Genet. 2020;133:383–393. doi: 10.1007/s00122-019-03469-z. PubMed DOI PMC
Zhang X.Y., Peng Y.M., Xiang H.Y., Wang Y., Li D.W., Yu J.L., Han C.G. Incidence and prevalence levels of three aphid-transmitted viruses in crucifer crops in China. J. Integr. Agric. 2022;21:774–780. doi: 10.1016/S2095-3119(21)63618-3. DOI
Kamitani M., Nagano A.J., Honjo M.N., Kudoh H. RNA-Seq reveals virus-virus and virus-plant interactions in nature. FEMS Microbiol. Ecol. 2016;92:fiw176. doi: 10.1093/femsec/fiw176. PubMed DOI PMC
Lim S., Yoo R.H., Igori D., Zhao F., Kim K.H., Moon J.S. Genome sequence of a recombinant brassica yellows virus infecting Chinese cabbage. Arch. Virol. 2015;160:597–600. doi: 10.1007/s00705-014-2258-1. PubMed DOI
Xiang H.Y., Dong S.W., Shang Q.X., Zhou C.J., Li D.W., Yu J.L., Han C.G. Molecular characterization of two genotypes of a new polerovirus infecting brassicas in China. Arch. Virol. 2011;156:2251–2255. doi: 10.1007/s00705-011-1091-z. PubMed DOI
Gray S., Cilia M., Ghanim M. Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Adv. Virus Res. 2014;89:141–199. PubMed
Zhang X.Y., Xiang H.Y., Zhou C.J., Li D.W., Yu J.L., Han C.G. Complete genome sequence analysis identifies a new genotype of brassica yellows virus that infects cabbage and radish in China. Arch. Virol. 2014;159:2177–2180. doi: 10.1007/s00705-014-2027-1. PubMed DOI
Yoshida N., Tamada T. Host range and molecular analyses of Beet leaf yellowing virus, Beet western yellows virus-JP and Brassica yellows virus in Japan. Plant Pathol. 2019;68:1045–1058. doi: 10.1111/ppa.13023. DOI
Taliansky M., Mayo M.A., Barker H. Potato leafroll virus: A classic pathogen shows some new tricks. Mol. Plant Pathol. 2003;4:81–90. doi: 10.1046/j.1364-3703.2003.00153.x. PubMed DOI
Derrien B., Baumberger N., Schepetilnikov M., Viotti C., De Cillia J., Ziegler-Graff V., Isono E., Schumacher K., Genschik P. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl. Acad. Sci. USA. 2012;109:15942–15946. doi: 10.1073/pnas.1209487109. PubMed DOI PMC
Li Y.Y., Sun Q., Zhao T.Y., Xiang H.Y., Zhang X.Y., Wu Z.Y., Zhou C.J., Zhang X., Wang Y., Zhang Y.L., et al. Interaction between brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. New Phytol. 2019;222:1458–1473. doi: 10.1111/nph.15702. PubMed DOI PMC
Prüfer D., Kawchuk L., Monecke M., Nowok S., Fischer R., Rohde W. Immunological analysis of potato leafroll luteovirus (PLRV) P1 expression identifies a 25kDa RNA-binding protein derived via P1 processing. Nucleic Acids Res. 1999;27:421–425. doi: 10.1093/nar/27.2.421. PubMed DOI PMC
van der Wilk F., Verbeek M., Dullemans A.M., van der Heuvel J.F.J.M. The genome-linked protein of Potato leafroll virus is located downstream of the putative protease domain of the ORF1 product. Virology. 1997;234:300–303. doi: 10.1006/viro.1997.8654. PubMed DOI
Smirnova E., Firth A.E., Allen Miller W., Scheidecker D., Brault V., Reinbold C., Rakotondrafara A.M., Chung B.Y.W., Ziegler-Graff V. Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathog. 2015;11:e1004868. doi: 10.1371/journal.ppat.1004868. PubMed DOI PMC
Schmitz J., Stussi-Garaud C., Tacke E., Prüfer D., Rohde W., Rohfritsch O. In situ localization of the putative movement protein (pr17) from potato leafroll lutevirus (PLRV) in infected and transgenic potato plants. Virology. 1997;235:311–322. doi: 10.1006/viro.1997.8679. PubMed DOI
Zhang X.Y., Zhao T.Y., Li Y.Y., Xiang H.Y., Dong S.W., Zhang Z.Y., Wang Y., Li D.W., Yu J.L., Han C.G. The conserved proline18 in the Polerovirus P3a is important for brassica yellows virus systemic infection. Front. Microbiol. 2018;9:613. doi: 10.3389/fmicb.2018.00613. PubMed DOI PMC
Xu Y., Ju H.J., Deblasio S., Carino E.J., Johnson R., MacCoss M.J., Heck M., Allen Miller W., Gray S.M. A stem-loop structure in Potato leafroll virus open reading frame 5 (ORF5) is essential for readthrough translation of the coat protein ORF stop codon 700 bases upstream. J. Virol. 2018;92:e01544-17. doi: 10.1128/JVI.01544-17. PubMed DOI PMC
Byrne M.J., Steele J.F.C., Hesketh E.L., Walden M., Thompson R.F., Lomonossoff G.P., Ranson N.A. Combining transient expression and Cryo-EM to obtain high-resolution structures of Luteovirid particles. Structure. 2019;27:1761–1770. doi: 10.1016/j.str.2019.09.010. PubMed DOI PMC
Chen X.R., Wang Y., Zhao H.H., Zhang X.Y., Wang X.B., Li D.W., Yu J.L., Han C.G. Brassica yellows virus’ movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Sci. Rep. 2018;8:16273. doi: 10.1038/s41598-018-34591-5. PubMed DOI PMC
Umar M., Farooq T., Tegg R.S., Thangavel T., Wilson C.R. Genomic characterisation of an isolate of Brassica yellows virus associated with brassica weed in Tasmania. Plants. 2022;11:884. doi: 10.3390/plants11070884. PubMed DOI PMC
Filardo F., Nancarrow N., Kehoe M., McTaggart A.R., Congdon B., Kumari S., Aftab M., Trębicki P., Rodoni B., Thomas J., et al. Genetic diversity and recombination between turnip yellows virus strains in Australia. Arch. Virol. 2021;166:813–829. doi: 10.1007/s00705-020-04931-w. PubMed DOI
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. doi: 10.1093/ve/vev003. PubMed DOI PMC
Abraham A.D., Menzel W., Lesemann D.E., Varrelmann M., Vetten H.J. Chickpea chlorotic stunt virus: A new polerovirus infecting cool-season food legumes in Ethiopia. Virology. 2006;96:437–446. doi: 10.1094/PHYTO-96-0437. PubMed DOI
Buxton-Kirk A., Adams I., Frew L., Ward R., Kelly M., Forde S., Skelton A., Harju V., Baucas N.S., Bas-Ilan M.A.G., et al. First report of Turnip yellows virus in cabbage in the Philippines. New Dis. Rep. 2021;44:1. doi: 10.1002/ndr2.12020. DOI
Gaafar Y.Z.A., Ziebell H. Two divergent isolates of turnip yellows virus from pea and rapeseed and first report of turnip yellows virus-associated RNA in Germany. Microbiol. Resour. Announc. 2019;8:e00214-19. doi: 10.1128/MRA.00214-19. PubMed DOI PMC
Milošević D., Ignjatov M., Nikolić Z., Stanković I., Bulajić A., Marjanović-Jeromela A., Krstić B. The presence of Turnip yellows virus in oilseed rape (Brassica napus L.) in Serbia. Pestic. Phytomed. 2016;31:37–44. doi: 10.2298/PIF1602037M. DOI
Slavíková L., Ibrahim E., Alquicer G., Tomašechová J., Šoltys K., Glasa M., Kundu J.K. Weed hosts represent an important reservoir of turnip yellows virus and a possible source of virus introduction into oilseed rape crop. Viruses. 2022;14:2511. doi: 10.3390/v14112511. PubMed DOI PMC
Nancarrow N., Aftab M., Hollaway G., Rodoni B., Trębicki P. Symptomless turnip yellows virus infection causes grain yield loss in lentil and field pea: A three-year field study in south-eastern Australia. Front. Plant Sci. 2022;13:1049905. doi: 10.3389/fpls.2022.1049905. PubMed DOI PMC
Umar M., Tegg R.S., Farooq T., Thangavel T., Wilson C.R. Abundance of Poleroviruses within Tasmanian pea cops and surrounding weeds, and the genetic diversity of TuYV isolates found. Viruses. 2022;14:1690. doi: 10.3390/v14081690. PubMed DOI PMC
Fang Z.D. The investigation of plant diseases. In: Zhang H.G., editor. Research Methods of Plant Pathology. China Agriculture Press; Beijing, China: 1998. pp. 12–13.
Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Chen C., Chen H., Zhang Y., Thomas H.R., Xia R. Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020;13:1194–1202. doi: 10.1016/j.molp.2020.06.009. PubMed DOI
Zhang X.Y., Peng Y.M., Wang Y., Zhang Z.Y., Li D.W., Yu J.L., Han C.G. Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction. Virol. J. 2016;13:189. doi: 10.1186/s12985-016-0647-7. PubMed DOI PMC
Wei T.Y., Zhang C.W., Hou X.L., Sanfaçon H., Wang A.M. The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog. 2013;9:e1003378. doi: 10.1371/journal.ppat.1003378. PubMed DOI PMC
Shang Q.X., Xiang H.Y., Han C.G., Li D.W., Yu J.L. Partial sequence analysis of two isolates of Cucurbit aphid-borne yellows virus from Hubei and Yunnan in China. Acta Phytopathol. Sin. 2008;38:64–68.
Wang Y., Wang D.J., Shi P.H., Omasa K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods. 2014;10:36. doi: 10.1186/1746-4811-10-36. PubMed DOI PMC
Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus