Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TM01000044
Technology Agency of the Czech Republic
PubMed
37447062
PubMed Central
PMC10346663
DOI
10.3390/plants12132501
PII: plants12132501
Knihovny.cz E-zdroje
- Klíčová slova
- RT-qPCR, TuYV, aphids, doubled haploids (DH), oilseed rape, resistance, virus titre,
- Publikační typ
- časopisecké články MeSH
Turnip yellows virus (TuYV), is one of the most important pathogens of oilseed rape, which has caused enormous yield losses in all growing regions of the world in recent years. Therefore, there is a need for resistant varieties for sustainable crop protection. We have investigated the resistance of known varieties and newly developed advanced-breeding lines of oilseed rape to TuYV in greenhouse and field trials. We have analysed the TuYV titre of individual genotypes inoculated with the virus using viruliferous aphids Myzus persicae. The genotypes 'DK Temptation' and 'Rescator' had the lowest and highest virus titres, respectively, and were used as resistant and susceptible models for comparative analyses with other genotypes. In the greenhouse, the best results were obtained with the genotypes 'OP-8143 DH' (2.94 × 105 copies), OP-BN-72 (3.29 × 105 copies), 'Navajo' (3.58 × 105 copies) and 'SG-C 21215' (4.09 × 105 copies), which reached virus titres about 2 times higher than the minimum virus concentration measured in 'DK Temptation' (1.80 × 105 copies). In the field trials, the genotypes 'Navajo' (3.39 × 105 copies), 'OP-8148 DH' (4.44 × 105 copies), 'SG-C 21215' (6.80 × 105 copies) and OP-8480 (7.19 × 105 copies) had the lowest virus titres and reached about 3 times the virus titre of DK Temptation (2.54 × 105 copies). Both trials showed that at least two commercial varieties (e.g., DK Temptation, Navajo) and three advanced breeding lines (e.g., OP-8143 DH, OP-BN-72, SG-C 21215) had low titres of the virus after TuYV infection. This indicates a high level of resistance to TuYV in 'Navajo' or the newly developed breeding lines and the basis of resistance is probably different from R54 (as in 'DK Temptation'). Furthermore, the greenhouse trials together with RT -qPCR-based virus titre analysis could be a cost-effective and efficient method to assess the level of resistance of a given genotype to TuYV infection compared to the field trials. However, further research is needed to identify the underlying mechanisms causing this difference in susceptibility.
Applied BioSciences Macquarie University Sydney 2109 Australia
Crop Research Institute 16106 Prague Czech Republic
OSEVA Development and Research Ltd Oilseed Research Institute 74601 Opava Czech Republic
Zobrazit více v PubMed
Kolte S.J. Rapeseed-Mustard and Sesame Diseases. Volume II. CRC Press; Boca Raton, FL, USA: 1985. Diseases of Annual Edible Oilseed Crops.135p
Rimmer S.R., Buchwaldi H. Brassica oilseed rape virus diseases. In: Kimber D.S., McgGregor D.I., editors. Brassica Oilseeds. Production and Utilization. CAB International; Wallingford, UK: 1995. p. 394.
Carré P., Pouzet A. Rapeseed market, worldwide and in Europe. OCL. 2014;21:D102. doi: 10.1051/ocl/2013054. DOI
Walsh J.A., Tomlinson J.A. Viruses infecting winter oilseed rape (Brassica-napus ssp. oleifera) Ann. Appl. Biol. 1985;107:485–495. doi: 10.1111/j.1744-7348.1985.tb03165.x. DOI
Jones R.A.C., Sharman M., Trebicki P., Maina S., Congdon B.S. Virus diseases of cereal and oilseed crops in Australia: Current position and future challenges. Viruses. 2021;13:2051. doi: 10.3390/v13102051. PubMed DOI PMC
Sõmera M., Fargette D., Hébrard E., Sarmiento C. ICTV Report Consortium: ICTV Virus Taxonomy Profile: Solemoviridae. J. Gen. Virol. 2021;102:001707. PubMed PMC
Duffus J.E. Host relationship of beet western yellows virus strains. Phytopathology. 1964;54:736–738.
Stevens M., Smith H.G., Hallsworth P.B. The host-range of Beet yellowing viruses among common arable weed species. Plant Pathol. 1994;43:579–588. doi: 10.1111/j.1365-3059.1994.tb01593.x. DOI
Graichen K., Rabenstein F. European isolates of Beet western yellows virus (BWYV) from oilseed rape (Brassica napus L. ssp. napus) are non-pathogenic on sugar beet (Beta vulgaris L. var. altissima) but represent isolates of Turnip yellows virus (TuYV) J. Plant Dis. Prot. 1996;103:233–245.
Coutts B.A., Hawkes J.R., Jones R.A.C. Occurrence of Beet western yellows virus and its aphid vectors in over-summering broad-leafed weeds and volunteer crop plants in the grainbelt region of south-western Australia. Aust. J. Agric. Res. 2006;57:975–982. doi: 10.1071/AR05407. DOI
Slavíková L., Ibrahim E., Alquicer G., Tomašechová J., Šoltys K., Glasa M., Kundu J.K. Weed hosts represent an important reservoir of turnip yellows virus and a possible source of virus introduction into oilseed rape crop. Viruses. 2022;14:2511. doi: 10.3390/v14112511. PubMed DOI PMC
Graichen K., Schliephake E. Infestation of winter oilseed rape by turnip yellows luteovirus and its effect on yield in Germany. In: Wratten N., Salisbury P.A., editors. Proceedings of the 10th International Rapeseed Congress–New Horizons for An Old Crop; Canberra, Australia. 26–29 September 1999; Canberra, Australia: International Consultative Group for Rapeseed Research; 1999. pp. 131–136.
Jay C.N., Rossall S., Smith H.G. Effects of beet western yellows virus on growth and yield of oilseed rape (Brassica napus) J. Agric. Sci. 1999;133:131–139. doi: 10.1017/S0021859699006711. DOI
Jones R.A.C., Coutts B.A., Hawkes J. Yield-limiting potential of beet western yellows virus in Brassica napus. Aust. J. Agric. Res. 2007;58:788–801. doi: 10.1071/AR06391. DOI
Congdon B.S., Baulch J.R., Coutts B.A. Impact of turnip yellows virus infection on seed yield of an open-pollinated and hybrid canola cultivar when inoculated at different growth stages. Virus Res. 2020;277:197847. doi: 10.1016/j.virusres.2019.197847. PubMed DOI
Smith H.G., Hinckes J.A. Studies on beet western yellows virus in oilseed rape (Brassica napus ssp. oleifera) and sugar beet (Beta vulgaris) Ann. Appl. Biol. 1985;107:473–484. doi: 10.1111/j.1744-7348.1985.tb03164.x. DOI
Schroeder M. Investigations on the susceptibility of oilseed rape (Brassica napus L., ssp. napus) to different virus diseases. J. Plant Dis. Prot. 1994;101:567–589.
Johnstone G.R., Duffus J.E. Some luteovirus diseases in Tasmania caused by beet western yellows and subterranean clover red leaf viruses. Aust. J. Agric. Res. 1984;35:821–830. doi: 10.1071/AR9840821. DOI
Randles J.W., Rathjen J.P. Genus Luteovirus. In: Murphy F.A., Fauquet C.M., Bishop D.H.L., Ghabrial S.A., Jarvis A.W., Martelli G.P., Mayo M.A., Summers M.D., editors. Virus Taxonomy. Springer; New York, NY, USA: 2000. pp. 379–383. Sixth Report of the International Committee on Taxonomy of Viruses.
Schliephake E., Graichen K., Rabenstein F. Investigations on the vector transmission of the Beet mild yellowing virus (BMYV) and the Turnip yellows virus (TuYV) J. Plant Dis. Prot. 2000;107:81–87.
Stevens M., McGrann G., Clark B. Turnip yellows virus (syn Beet western yellos virus): An emerging threat to European oilseed rape production? HGCA Res. Rev. 2008;69:1–37.
Walsh J.A., Perrin R.M., Miller A., Laycock D.S. Studies on beet western yellows virus in winter oilseed rape (Brassica napus ssp. oleifera) and the efect of insecticidal treatment on its spread. Crop. Prot. 1989;8:137–143. doi: 10.1016/0261-2194(89)90090-2. DOI
Heimbach U., Kral G., Niemann P. EU regulatory aspects of resistance risk assessment. Pest Manag. Sci. 2002;58:935–938. doi: 10.1002/ps.538. PubMed DOI
Read M.A., Hewson R.T. Brighton Crop Protection Conference—Pest and Diseases. BCPC Reg. Office; Bath, UK: 1988. Prevention of Beet western yellows virus (BWYV) in winter oilseed rape by control of aphid vectors with deltamethrin; pp. 989–997.
Graichen K. Nachweis von resistenzgegenüberdem turnip yellows luteovirus (TuYV) in winterraps und verwandtenarten. Vortr. Pflanz. 1994;30:132–143.
Hackenberg D., Asare-Bediako E., Baker A., Walley P., Jenner C., Greer S., Bramham L., Batley J., Edwards D., Delourme R., et al. Identification and QTL mapping of resistance to turnip yellows virus (TuYV) in oilseed rape, Brassica napus. Theor. Appl. Genet. 2020;113:383–393. doi: 10.1007/s00122-019-03469-z. PubMed DOI PMC
Kae B.M., Lee J.I., Kwon B.S. A New Rape Cultivar Yudal. Research Reports of the Office of Rural Development, S Korea, Crop 14: 67–70. 1971. [(accessed on 22 May 2023)]. Available online: https://eurekamag.com/research/000/006/000006111.php.
Choy Y.H., Jeong Y.J., Kim M.J., Park H.M., Lee J.S., Jang Y.S., Han I.S., Yoon M.S., Yoon Y.H. Improvement of erucic acid level in Brassica napus L. Yudal; Proceedings of the 12th International Rapeseed Conference, Sustainable Development in Cruciferous Oilseed Crops Production; Wuhan, China. 26–30 March 2007; pp. 58–61.
Juergens M., Paetsch C., Krämer I., Zahn M., Rabenstein F., Schondelmaier J., Schliephake E., Snowdon R., Friedt W., Frank Ordon F. Genetic analyses of the host-pathogen system Turnip yellows virus (TuYV)—Rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance. Theor. Appl. Genet. 2010;120:735–744. doi: 10.1007/s00122-009-1194-z. PubMed DOI
Weyen J. Applications of Doubled Haploids in Plant Breeding and Applied Research. Methods Mol. Biol. 2021;2287:23–39. PubMed
Hasan N., Choudhary S., Naaz N., Sharma N., Laskar R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Bioethanol. 2021;19:128. doi: 10.1186/s43141-021-00231-1. PubMed DOI PMC
Dreyer F., Graichen K., Jung C. A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breed. 2001;120:457–462. doi: 10.1046/j.1439-0523.2001.00646.x. DOI
Cooper J.I., Jones A.T. Responses of plants to viruses: Proposals for the use of terms. Phytopathology. 1983;73:127–128. doi: 10.1094/Phyto-73-127. DOI
Congdon B.S., Baulch J.R., Coutts B.A. Novel sources of turnip yellows virus resistance in Brassica and impacts of temperature on their durability. Plant Dis. 2021;105:2484–2493. doi: 10.1094/PDIS-10-20-2312-RE. PubMed DOI
Greer S.F., Hackenberg D., Gegas V., Mitrousia G., Edwards D., Batley J., Teakle G.R., Barker G.C., Walsh J.A. Quantitative trait locus mapping of resistance to turnip yellows virus in Brassica rapa and Brassica oleracea and introgression of these resistances by resynthesis into allotetraploid plants for deployment in Brassica napus. Front Plant Sci. 2021;12:781385. doi: 10.3389/fpls.2021.781385. PubMed DOI PMC
Jarošová J., Kundu J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10:146. doi: 10.1186/1471-2229-10-146. PubMed DOI PMC
Ranabhat N.B., Bruce M.A., Fellers J.P., Shoup Rupp J.L. A reproducible methodology for absolute viral quantification and viability determination in mechanical inoculations of wheat streak mosaic virus. Trop. Plant Pathol. 2022;47:553–561. doi: 10.1007/s40858-022-00507-y. DOI
Lecoq H., Moury B., Desbiez C., Palloix A., Pitrat M. Durable virus resistance in plants through conventional approaches: A challenge. Virus Res. 2004;100:31–39. doi: 10.1016/j.virusres.2003.12.012. PubMed DOI
Jarošová J., Chrpová J., Šíp V., Kundu J.K. A comparative study of the Barley yellow dwarf virus species PAV and PAS: Distribution, accumulation and host resistance. Plant Pathol. 2013;62:436–443. doi: 10.1111/j.1365-3059.2012.02644.x. DOI
Beoni E., Chrpová J., Jarošová J., Kundu J.K. Survey of barley yellow dwarf virus incidence in winter cereals crops, and assessment of wheat and barley resistance to the virus. Crop. Pasture Sci. 2016;67:1054–1063. doi: 10.1071/CP16167. DOI
Hajano J.U.D., Zhang H.B., Ren Y.D., Lu C.T., Wang X.F. Screening of rice (Oryza sativa) cultivars for resistance to rice black streaked dwarf virus using quantitative PCR and visual disease assessment. Plant Pathol. 2016;65:1509–1517. doi: 10.1111/ppa.12534. DOI
Ripl J., Dráb T., Gadiou S., Kundu J.K. Differences in responses to Wheat dwarf virus infection in contrasting wheat cultivars Ludwig and Svitava. Plant Protect. Sci. 2020;56:67–73. doi: 10.17221/57/2018-PPS. DOI
Sharaf A., Nuc P., Ripl J., Alquicer G., Ibrahim E., Wang X., Maruthi M.N., Kundu J.K. Transcriptome dynamics in Triticum aestivum genotypes associated with resistance against the wheat dwarf virus. Viruses. 2023;15:689. doi: 10.3390/v15030689. PubMed DOI PMC
Marshall B., Barker H., Verrall S.R. Effects of potato leaf roll virus on crop processes leading to tuber yield in potato cultivars, which differ in tolerance of infection. Ann. Appl. Biol. 1988;113:297–305. doi: 10.1111/j.1744-7348.1988.tb03306.x. DOI
Coutts B.A., Webster C.G., Jones R.A.C. Control of beet western yellows virus in Brassica napus crops: Infection resistance in Australian genotypes and effectiveness of imidacloprid seed dressing. Crop. Pasture Sci. 2010;61:321–330. doi: 10.1071/CP09264. DOI
Walkey D.G.A., Pink D.A.C. Studies on resistance to Beet western yellows virus in lettuce (Lactuca sativa) and the occurrence of field sources of the virus. Plant Pathol. 1990;39:141–155. doi: 10.1111/j.1365-3059.1990.tb02485.x. DOI
Duffus J.E., Milbrath G.M. Susceptibility and immunity in soybean to Beet western yellows virus. Phytopathology. 1977;67:269–272. doi: 10.1094/Phyto-67-269. DOI
Honjo M.N., Emura N., Kawagoe T., Sugisaka J., Kamitani M., Nagano A.J., Kudoh H. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME J. 2020;14:506–518. doi: 10.1038/s41396-019-0519-4. PubMed DOI PMC
Pagán I., Montes N., Milgroom M.G., García-Arenal F. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLoS Pathog. 2014;10:e1004293. doi: 10.1371/journal.ppat.1004293. PubMed DOI PMC
Pfrieme A.K., Ruckwied B., Habekuß A., Will T., Stahl A., Pillen K., Ordon F. Identification and validation of quantitative trait loci for wheat dwarf virus resistance in wheat (Triticum Spp.) Front. Plant Sci. 2022;13:828639. doi: 10.3389/fpls.2022.828639. PubMed DOI PMC
Trębicki P., Vandegeer R.K., Bosque-Pérez N.A., Powell K.S., Dader B., Freeman A.J., Yen A.L., Fitzgerald G.J., Luck J.E. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci. Rep. 2016;6:22785. doi: 10.1038/srep22785. PubMed DOI PMC
Carreras Navarro E., Lam S.K., Trębicki P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. 2020;11:1909. doi: 10.3389/fpls.2020.605337. PubMed DOI PMC
Moreno-Delafuente A., Viñuela E., Fereres A., Medina P., Trębicki P. Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects. 2020;11:459. doi: 10.3390/insects11080459. PubMed DOI PMC
Nagamani S., Ankita T., Mandal B., Jain R.K. Effect of temperature on systemic infection and symptom expression induced by soybean yellow mottle mosaic virus in leguminous hosts. Australas. Plant Pathol. 2020;49:579–589.
Schafer J.F. Tolerance to plant disease. Annu. Rev. Phytopathol. 1971;9:235–252. doi: 10.1146/annurev.py.09.090171.001315. DOI
Pagán I., García-Arenal F. Tolerance to plant pathogens: Theory and experimental evidence. Int. J. Mol. Sci. 2018;19:810. doi: 10.3390/ijms19030810. PubMed DOI PMC
Paudel D.B., Sanfacon H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018;9:1575. doi: 10.3389/fpls.2018.01575. PubMed DOI PMC
Filardo F., Nancarrow N., Kehoe M., McTaggart A.R., Congdon B., Kumari S., Aftab M., Trebicki P., Rodoni B., Thomas J., et al. Genetic diversity and recombination between turnip yellows virus strains in Australia. Arch. Virol. 2021;166:813–829. doi: 10.1007/s00705-020-04931-w. PubMed DOI
Peng Q., Li W., Zhou X., Sun C., Hou Y., Hu M., Fu S., Zhang J., Kundu J.K., Lei L. Genetic diversity analysis of Brassica yellows virus causing aberrant color symptoms in oilseed rape. Plants. 2023;12:1008. doi: 10.3390/plants12051008. PubMed DOI PMC
Klíma M., Vyvadilová M., Kučera V. Production and utilization of doubled haploids in Brassica oleracea vegetables. Hortic. Sci. 2004;31:119–123. doi: 10.17221/3804-HORTSCI. DOI
Klíma M., Vyvadilová M., Kucera V. Chromosome doubling effects of selected antimitotic agents in Brassica napus microspore culture. Czech J. Genet. Plant Breed. 2008;44:30–36. doi: 10.17221/1328-CJGPB. DOI
Dráb T., Svobodová E., Ripl J., Jarošová J., Rabenstein F., Melcher U., Kundu J.K. SYBR Green I based RT-qPCR assays for the detection of RNA viruses of cereals and grasses. Crop. Pasture Sci. 2014;65:1323–1328. doi: 10.1071/CP14151. DOI
Singh K., Kundu J.K. Variation in coat protein sequence of Wheat streak mosaic virus among crop and no crop hosts. Crop. Pasture Sci. 2017;68:328–336. doi: 10.1071/CP17025. DOI
Lee C., Kim J., Shin G.S., Hwang S. Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006;123:273–280. doi: 10.1016/j.jbiotec.2005.11.014. PubMed DOI
Edwards K., Johnstone C., Thompson C.A. Simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349. doi: 10.1093/nar/19.6.1349. PubMed DOI PMC