Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler- Part I: Structure, Morphology, and Rheological Effects during Vulcanization

. 2023 Feb 26 ; 15 (5) : . [epub] 20230226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36904417

Grantová podpora
451-03-68/2022-2114/200134 Ministry of Education, Science and Technological Development of the Republic of Serbia
COST Action Essence CA1911 European Cooperation in Science and Technology
TN02000020 Technology Agency of the Czech Republic

A new generation biomass-based filler for natural rubber, 'hydrochar' (HC), was obtained by hydrothermal carbonization of hardwood waste (sawdust). It was intended as a potential partial replacement for the traditional carbon black (CB) filler. The HC particles were found (TEM) to be much larger (and less regular) than CB: 0.5-3 µm vs. 30-60 nm, but the specific surface areas were relatively close to each other (HC: 21.4 m2/g vs. CB: 77.8 m2/g), indicating a considerable porosity of HC. The carbon content of HC was 71%, up from 46% in sawdust feed. FTIR and 13C-NMR analyses indicated that HC preserved its organic character, but it strongly differs from both lignin and cellulose. Experimental rubber nanocomposites were prepared, in which the content of the combined fillers was set at 50 phr (31 wt.%), while the HC/CB ratios were varied between 40/10 and 0/50. Morphology investigations proved a fairly even distribution of HC and CB, as well as the disappearance of bubbles after vulcanization. Vulcanization rheology tests demonstrated that the HC filler does not hinder the process, but it significantly influences vulcanization chemistry, canceling scorch time on one hand and slowing down the reaction on the other. Generally, the results suggest that rubber composites in which 10-20 phr of CB are replaced by HC might be promising materials. The use of HC in the rubber industry would represent a high-tonnage application for hardwood waste.

Zobrazit více v PubMed

Robertson C.G., Hardman N.J. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers. 2021;13:538. doi: 10.3390/polym13040538. PubMed DOI PMC

Okoye C.O., Jones I., Zhu M., Zhang Z., Zhang D. Manufacturing of Carbon Black from Spent Tyre Pyrolysis Oil—A Literature Review. J. Clean. Prod. 2021;279:123336. doi: 10.1016/j.jclepro.2020.123336. DOI

Ismail H., Edyham M.R., Wirjosentono B. Bamboo Fibre Filled Natural Rubber Composites: The Effects of Filler Loading and Bonding Agent. Polym. Test. 2002;21:139–144. doi: 10.1016/S0142-9418(01)00060-5. DOI

Jong L. Reinforcement Effect of Soy Protein/Carbohydrate Ratio in Styrene-Butadiene Polymer. J. Elastomers Plast. 2011;43:99–117. doi: 10.1177/0095244311398632. DOI

Peterson S.C. Carbon Black Replacement in Natural Rubber Composites Using Dry-Milled Calcium Carbonate, Soy Protein, and Biochar. Processes. 2022;10:123. doi: 10.3390/pr10010123. DOI

Moonlek B., Saenboonruang K. Mechanical and Electrical Properties of Radiation-Vulcanized Natural Rubber Latex with Waste Eggshell Powder as Bio-Fillers. Radiat. Eff. Defects Solids. 2019;174:452–466. doi: 10.1080/10420150.2019.1596111. DOI

Tang H., Qi Q., Wu Y., Liang G., Zhang L., Ma J. Reinforcement of Elastomer by Starch. Macromol. Mater. Eng. 2006;291:629–637. doi: 10.1002/mame.200600033. DOI

Wang Z.F., Peng Z., Li S.D., Lin H., Zhang K.X., She X.D., Fu X. The Impact of Esterification on the Properties of Starch/Natural Rubber Composite. Compos. Sci. Technol. 2009;69:1797–1803. doi: 10.1016/j.compscitech.2009.04.018. DOI

Masłowski M., Miedzianowska J., Strzelec K. The Potential Application of Cereal Straw as a Bio-Filler for Elastomer Composites. Polym. Bull. 2020;77:2021–2038. doi: 10.1007/s00289-019-02848-2. DOI

Lay M., Rusli A., Abdullah M.K., Abdul Hamid Z.A., Shuib R.K. Converting Dead Leaf Biomass into Activated Carbon as a Potential Replacement for Carbon Black Filler in Rubber Composites. Compos. B Eng. 2020;201:108366. doi: 10.1016/j.compositesb.2020.108366. DOI

Jong L., Peterson S.C., Jackson M.A. Utilization of Porous Carbons Derived from Coconut Shell and Wood in Natural Rubber. J. Polym. Environ. 2014;22:289–297. doi: 10.1007/s10924-013-0637-4. DOI

Peterson S.C., Chandrasekaran S.R., Sharma B.K. Birchwood Biochar as Partial Carbon Black Replacement in Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2016;48:305–316. doi: 10.1177/0095244315576241. DOI

Peterson S.C. Evaluating Corn Starch and Corn Stover Biochar as Renewable Filler in Carboxylated Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2012;44:43–54. doi: 10.1177/0095244311414011. DOI

Xue B., Wang X., Sui J., Xu D., Zhu Y., Liu X. A Facile Ball Milling Method to Produce Sustainable Pyrolytic Rice Husk Bio-Filler for Reinforcement of Rubber Mechanical Property. Ind. Crops Prod. 2019;141:111791. doi: 10.1016/j.indcrop.2019.111791. DOI

Li M.C., Zhang Y., Cho U.R. Mechanical, Thermal and Friction Properties of Rice Bran Carbon/Nitrile Rubber Composites: Influence of Particle Size and Loading. Mater Des. 2014;63:565–574. doi: 10.1016/j.matdes.2014.06.032. DOI

Jiang C., Bo J., Xiao X., Zhang S., Wang Z., Yan G., Wu Y., Wong C., He H. Converting Waste Lignin into Nano-Biochar as a Renewable Substitute of Carbon Black for Reinforcing Styrene-Butadiene Rubber. Waste Manag. 2020;102:732–742. doi: 10.1016/j.wasman.2019.11.019. PubMed DOI

Peterson S.C. Utilization of Low-Ash Biochar to Partially Replace Carbon Black in Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2013;45:487–497. doi: 10.1177/0095244312459181. DOI

Peterson S.C. Coppiced Biochars as Partial Replacement of Carbon Black Filler in Polybutadiene/Natural Rubber Composites. J. Compos. Sci. 2020;4:147. doi: 10.3390/jcs4040147. DOI

Peterson S.C., Joshee N. Co-Milled Silica and Coppiced Wood Biochars Improve Elongation and Toughness in Styrene-Butadiene Elastomeric Composites While Replacing Carbon Black. J. Elastomers Plast. 2018;50:667–676. doi: 10.1177/0095244317753653. DOI

Fang J., Zhan L., Ok Y.S., Gao B. Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass. J. Ind. Eng. Chem. 2018;57:15–21. doi: 10.1016/j.jiec.2017.08.026. DOI

Sekar P. Ph.D. Thesis. University of Twente; Enschede, The Netherlends: 2020. Design of a Bio-Based Filler System for Tire Treads.

Liu T., Jiao H.T., Yang L., Zhang W., Hu Y., Guo Y., Yang L., Leng S., Chen J., Chen J., et al. Co-Hydrothermal Carbonization of Cellulose, Hemicellulose, and Protein with Aqueous Phase Recirculation: Insight into the Reaction Mechanisms on Hydrochar Formation. Energy. 2022;251:123965. doi: 10.1016/j.energy.2022.123965. DOI

Funke A., Ziegler F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining. 2010;4:160–177. doi: 10.1002/bbb.198. DOI

Rodríguez Correa C., Stollovsky M., Hehr T., Rauscher Y., Rolli B., Kruse A. Influence of the Carbonization Process on Activated Carbon Properties from Lignin and Lignin-Rich Biomasses. ACS Sustain. Chem. Eng. 2017;5:8222–8233. doi: 10.1021/acssuschemeng.7b01895. DOI

Wang T., Zhai Y., Zhu Y., Li C., Zeng G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018;90:223–247. doi: 10.1016/j.rser.2018.03.071. DOI

Saqib N.U., Baroutian S., Sarmah A.K. Physicochemical, Structural and Combustion Characterization of Food Waste Hydrochar Obtained by Hydrothermal Carbonization. Bioresour. Technol. 2018;266:357–363. doi: 10.1016/j.biortech.2018.06.112. PubMed DOI

Zhang Z., Zhu Z., Shen B., Liu L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy. 2019;171:581–598. doi: 10.1016/j.energy.2019.01.035. DOI

Bejenari I., Dinu R., Montes S., Volf I., Mija A. Hydrothermal Carbon as Reactive Fillers to Produce Sustainable Biocomposites with Aromatic Bio-Based Epoxy Resins. Polymers. 2021;13:240. doi: 10.3390/polym13020240. PubMed DOI PMC

Lubura J., Kojić P., Ikonić B., Pavličević J., Govedarica D., Bera O. Influence of Biochar and Carbon Black on Natural Rubber Mixture Properties. Polym. Int. 2022;71:1347–1353. doi: 10.1002/pi.6439. DOI

Brus J. Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI

Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Unger K.K. Recommendations for the characterization of porous solids (Technical Report) Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI

Lubura J., Kočková O., Strachota B., Bera O., Pavličević J., Ikonić B., Kojić P., Strachota A. Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler-Part II: Mechanical, Thermal and Ageing Properties. Polymers. 2023 PubMed PMC

Barton T.J., Bull L.M., Klemperer W.G., Loy D.A., McEnaney B., Misono M., Monson P.A., Pez G., Schere G.W., Vartuli J.C., et al. Tailored Porous Materials. Chem. Mater. 1999;11:2633–2656. doi: 10.1021/cm9805929. DOI

Ren T., Qi W., Su R., He Z. Promising Techniques for Depolymerization of Lignin into Value-Added Chemicals. ChemCatChem. 2019;11:639–654. doi: 10.1002/cctc.201801428. DOI

de Souza F.A.L., Ambrozio A.R., Souza E.S., Cipriano D.F., Scopel W.L., Freitas J.C.C. NMR Spectral Parameters in Graphene, Graphite, and Related Materials: Ab Initio Calculations and Experimental Results. J. Phys. Chem. 2016;120:27707–27716. doi: 10.1021/acs.jpcc.6b10042. DOI

Kono H., Yunoki S., Shikano T., Fujiwara M., Erata T., Takai M. CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose. J. Am. Chem. Soc. 2002;124:7506–7511. doi: 10.1021/ja010704o. PubMed DOI

Huang C., He J., Narron R., Wang Y., Yong Q. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustain. Chem. Eng. 2017;5:11770–11779. doi: 10.1021/acssuschemeng.7b03415. DOI

Ambrozio A.R., Leyssale J.M., Pellenq R.J.M., de Souza F.A.L., Vignoles G.L., Scopel W.L., Freitas J.C.C. 13C NMR Parameters of Disordered Carbons: Atomistic Simulations, DFT Calculations, and Experimental Results. J. Phys. Chem. 2020;124:12784–12793. doi: 10.1021/acs.jpcc.0c02921. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...