Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler- Part I: Structure, Morphology, and Rheological Effects during Vulcanization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
451-03-68/2022-2114/200134
Ministry of Education, Science and Technological Development of the Republic of Serbia
COST Action Essence CA1911
European Cooperation in Science and Technology
TN02000020
Technology Agency of the Czech Republic
PubMed
36904417
PubMed Central
PMC10007617
DOI
10.3390/polym15051176
PII: polym15051176
Knihovny.cz E-zdroje
- Klíčová slova
- bio-sourced raw materials, carbon black, hydrochar, hydrothermal carbonization, natural rubber composites, vulcanization chemistry,
- Publikační typ
- časopisecké články MeSH
A new generation biomass-based filler for natural rubber, 'hydrochar' (HC), was obtained by hydrothermal carbonization of hardwood waste (sawdust). It was intended as a potential partial replacement for the traditional carbon black (CB) filler. The HC particles were found (TEM) to be much larger (and less regular) than CB: 0.5-3 µm vs. 30-60 nm, but the specific surface areas were relatively close to each other (HC: 21.4 m2/g vs. CB: 77.8 m2/g), indicating a considerable porosity of HC. The carbon content of HC was 71%, up from 46% in sawdust feed. FTIR and 13C-NMR analyses indicated that HC preserved its organic character, but it strongly differs from both lignin and cellulose. Experimental rubber nanocomposites were prepared, in which the content of the combined fillers was set at 50 phr (31 wt.%), while the HC/CB ratios were varied between 40/10 and 0/50. Morphology investigations proved a fairly even distribution of HC and CB, as well as the disappearance of bubbles after vulcanization. Vulcanization rheology tests demonstrated that the HC filler does not hinder the process, but it significantly influences vulcanization chemistry, canceling scorch time on one hand and slowing down the reaction on the other. Generally, the results suggest that rubber composites in which 10-20 phr of CB are replaced by HC might be promising materials. The use of HC in the rubber industry would represent a high-tonnage application for hardwood waste.
Zobrazit více v PubMed
Robertson C.G., Hardman N.J. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers. 2021;13:538. doi: 10.3390/polym13040538. PubMed DOI PMC
Okoye C.O., Jones I., Zhu M., Zhang Z., Zhang D. Manufacturing of Carbon Black from Spent Tyre Pyrolysis Oil—A Literature Review. J. Clean. Prod. 2021;279:123336. doi: 10.1016/j.jclepro.2020.123336. DOI
Ismail H., Edyham M.R., Wirjosentono B. Bamboo Fibre Filled Natural Rubber Composites: The Effects of Filler Loading and Bonding Agent. Polym. Test. 2002;21:139–144. doi: 10.1016/S0142-9418(01)00060-5. DOI
Jong L. Reinforcement Effect of Soy Protein/Carbohydrate Ratio in Styrene-Butadiene Polymer. J. Elastomers Plast. 2011;43:99–117. doi: 10.1177/0095244311398632. DOI
Peterson S.C. Carbon Black Replacement in Natural Rubber Composites Using Dry-Milled Calcium Carbonate, Soy Protein, and Biochar. Processes. 2022;10:123. doi: 10.3390/pr10010123. DOI
Moonlek B., Saenboonruang K. Mechanical and Electrical Properties of Radiation-Vulcanized Natural Rubber Latex with Waste Eggshell Powder as Bio-Fillers. Radiat. Eff. Defects Solids. 2019;174:452–466. doi: 10.1080/10420150.2019.1596111. DOI
Tang H., Qi Q., Wu Y., Liang G., Zhang L., Ma J. Reinforcement of Elastomer by Starch. Macromol. Mater. Eng. 2006;291:629–637. doi: 10.1002/mame.200600033. DOI
Wang Z.F., Peng Z., Li S.D., Lin H., Zhang K.X., She X.D., Fu X. The Impact of Esterification on the Properties of Starch/Natural Rubber Composite. Compos. Sci. Technol. 2009;69:1797–1803. doi: 10.1016/j.compscitech.2009.04.018. DOI
Masłowski M., Miedzianowska J., Strzelec K. The Potential Application of Cereal Straw as a Bio-Filler for Elastomer Composites. Polym. Bull. 2020;77:2021–2038. doi: 10.1007/s00289-019-02848-2. DOI
Lay M., Rusli A., Abdullah M.K., Abdul Hamid Z.A., Shuib R.K. Converting Dead Leaf Biomass into Activated Carbon as a Potential Replacement for Carbon Black Filler in Rubber Composites. Compos. B Eng. 2020;201:108366. doi: 10.1016/j.compositesb.2020.108366. DOI
Jong L., Peterson S.C., Jackson M.A. Utilization of Porous Carbons Derived from Coconut Shell and Wood in Natural Rubber. J. Polym. Environ. 2014;22:289–297. doi: 10.1007/s10924-013-0637-4. DOI
Peterson S.C., Chandrasekaran S.R., Sharma B.K. Birchwood Biochar as Partial Carbon Black Replacement in Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2016;48:305–316. doi: 10.1177/0095244315576241. DOI
Peterson S.C. Evaluating Corn Starch and Corn Stover Biochar as Renewable Filler in Carboxylated Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2012;44:43–54. doi: 10.1177/0095244311414011. DOI
Xue B., Wang X., Sui J., Xu D., Zhu Y., Liu X. A Facile Ball Milling Method to Produce Sustainable Pyrolytic Rice Husk Bio-Filler for Reinforcement of Rubber Mechanical Property. Ind. Crops Prod. 2019;141:111791. doi: 10.1016/j.indcrop.2019.111791. DOI
Li M.C., Zhang Y., Cho U.R. Mechanical, Thermal and Friction Properties of Rice Bran Carbon/Nitrile Rubber Composites: Influence of Particle Size and Loading. Mater Des. 2014;63:565–574. doi: 10.1016/j.matdes.2014.06.032. DOI
Jiang C., Bo J., Xiao X., Zhang S., Wang Z., Yan G., Wu Y., Wong C., He H. Converting Waste Lignin into Nano-Biochar as a Renewable Substitute of Carbon Black for Reinforcing Styrene-Butadiene Rubber. Waste Manag. 2020;102:732–742. doi: 10.1016/j.wasman.2019.11.019. PubMed DOI
Peterson S.C. Utilization of Low-Ash Biochar to Partially Replace Carbon Black in Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2013;45:487–497. doi: 10.1177/0095244312459181. DOI
Peterson S.C. Coppiced Biochars as Partial Replacement of Carbon Black Filler in Polybutadiene/Natural Rubber Composites. J. Compos. Sci. 2020;4:147. doi: 10.3390/jcs4040147. DOI
Peterson S.C., Joshee N. Co-Milled Silica and Coppiced Wood Biochars Improve Elongation and Toughness in Styrene-Butadiene Elastomeric Composites While Replacing Carbon Black. J. Elastomers Plast. 2018;50:667–676. doi: 10.1177/0095244317753653. DOI
Fang J., Zhan L., Ok Y.S., Gao B. Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass. J. Ind. Eng. Chem. 2018;57:15–21. doi: 10.1016/j.jiec.2017.08.026. DOI
Sekar P. Ph.D. Thesis. University of Twente; Enschede, The Netherlends: 2020. Design of a Bio-Based Filler System for Tire Treads.
Liu T., Jiao H.T., Yang L., Zhang W., Hu Y., Guo Y., Yang L., Leng S., Chen J., Chen J., et al. Co-Hydrothermal Carbonization of Cellulose, Hemicellulose, and Protein with Aqueous Phase Recirculation: Insight into the Reaction Mechanisms on Hydrochar Formation. Energy. 2022;251:123965. doi: 10.1016/j.energy.2022.123965. DOI
Funke A., Ziegler F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining. 2010;4:160–177. doi: 10.1002/bbb.198. DOI
Rodríguez Correa C., Stollovsky M., Hehr T., Rauscher Y., Rolli B., Kruse A. Influence of the Carbonization Process on Activated Carbon Properties from Lignin and Lignin-Rich Biomasses. ACS Sustain. Chem. Eng. 2017;5:8222–8233. doi: 10.1021/acssuschemeng.7b01895. DOI
Wang T., Zhai Y., Zhu Y., Li C., Zeng G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018;90:223–247. doi: 10.1016/j.rser.2018.03.071. DOI
Saqib N.U., Baroutian S., Sarmah A.K. Physicochemical, Structural and Combustion Characterization of Food Waste Hydrochar Obtained by Hydrothermal Carbonization. Bioresour. Technol. 2018;266:357–363. doi: 10.1016/j.biortech.2018.06.112. PubMed DOI
Zhang Z., Zhu Z., Shen B., Liu L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy. 2019;171:581–598. doi: 10.1016/j.energy.2019.01.035. DOI
Bejenari I., Dinu R., Montes S., Volf I., Mija A. Hydrothermal Carbon as Reactive Fillers to Produce Sustainable Biocomposites with Aromatic Bio-Based Epoxy Resins. Polymers. 2021;13:240. doi: 10.3390/polym13020240. PubMed DOI PMC
Lubura J., Kojić P., Ikonić B., Pavličević J., Govedarica D., Bera O. Influence of Biochar and Carbon Black on Natural Rubber Mixture Properties. Polym. Int. 2022;71:1347–1353. doi: 10.1002/pi.6439. DOI
Brus J. Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Unger K.K. Recommendations for the characterization of porous solids (Technical Report) Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI
Lubura J., Kočková O., Strachota B., Bera O., Pavličević J., Ikonić B., Kojić P., Strachota A. Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler-Part II: Mechanical, Thermal and Ageing Properties. Polymers. 2023 PubMed PMC
Barton T.J., Bull L.M., Klemperer W.G., Loy D.A., McEnaney B., Misono M., Monson P.A., Pez G., Schere G.W., Vartuli J.C., et al. Tailored Porous Materials. Chem. Mater. 1999;11:2633–2656. doi: 10.1021/cm9805929. DOI
Ren T., Qi W., Su R., He Z. Promising Techniques for Depolymerization of Lignin into Value-Added Chemicals. ChemCatChem. 2019;11:639–654. doi: 10.1002/cctc.201801428. DOI
de Souza F.A.L., Ambrozio A.R., Souza E.S., Cipriano D.F., Scopel W.L., Freitas J.C.C. NMR Spectral Parameters in Graphene, Graphite, and Related Materials: Ab Initio Calculations and Experimental Results. J. Phys. Chem. 2016;120:27707–27716. doi: 10.1021/acs.jpcc.6b10042. DOI
Kono H., Yunoki S., Shikano T., Fujiwara M., Erata T., Takai M. CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose. J. Am. Chem. Soc. 2002;124:7506–7511. doi: 10.1021/ja010704o. PubMed DOI
Huang C., He J., Narron R., Wang Y., Yong Q. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustain. Chem. Eng. 2017;5:11770–11779. doi: 10.1021/acssuschemeng.7b03415. DOI
Ambrozio A.R., Leyssale J.M., Pellenq R.J.M., de Souza F.A.L., Vignoles G.L., Scopel W.L., Freitas J.C.C. 13C NMR Parameters of Disordered Carbons: Atomistic Simulations, DFT Calculations, and Experimental Results. J. Phys. Chem. 2020;124:12784–12793. doi: 10.1021/acs.jpcc.0c02921. DOI