Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler-Part II: Mechanical, Thermal and Ageing (Chemical) Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
451-03-68/2022-2114/200134
Ministry of Education, Science and Technological Development of the Republic of Serbia
COST Action Essence CA1911
European Cooperation in Science and Technology
TN02000020
Technology Agency of the Czech Republic
PubMed
37242972
PubMed Central
PMC10220732
DOI
10.3390/polym15102397
PII: polym15102397
Knihovny.cz E-zdroje
- Klíčová slova
- bio-sourced raw materials, carbon black, degradation stability, hydrochar, hydrothermal carbonization, mechanical properties, natural rubber composites,
- Publikační typ
- časopisecké články MeSH
Natural rubber composites were reinforced by the co-fillers 'hydrochar' (HC), obtained by hydrothermal carbonization of hardwood sawdust and commercial carbon black (CB). The content of the combined fillers was kept constant while their ratio was varied. The aim was to test the suitability of HC as a partial filler in natural rubber. Due to its larger particle size and hence smaller specific surface area, large amounts of HC reduced the crosslinking density in the composites. On the other hand, due to its unsaturated organic character, HC was found to display interesting chemical effects: if it was used as the exclusive filler component, it displayed a very strong anti-oxidizing effect, which greatly stabilized the rubber composite against oxidative crosslinking (and hence embrittlement). HC also affected the vulcanization kinetics in different ways, depending on the HC/CB ratio. Composites with HC/CB ratios 20/30 and 10/40 displayed interesting chemical stabilization in combination with fairly good mechanical properties. The performed analyses included vulcanization kinetics, tensile properties, determination of density of permanent and reversible crosslinking in dry and swollen states, chemical stability tests including TGA, thermo-oxidative aging tests in air at 180 °C, simulated weathering in real use conditions ('Florida test'), and thermo-mechanical analyses of degraded samples. Generally, the results indicate that HC could be a promising filler material due to its specific reactivity.
Zobrazit více v PubMed
Omnès B., Thuillier S., Pilvin P., Grohens Y., Gillet S. Effective Properties of Carbon Black Filled Natural Rubber: Experiments and Modeling. Compos. Part A Appl. Sci. Manuf. 2008;39:1141–1149. doi: 10.1016/j.compositesa.2008.04.003. DOI
Farida E., Bukit N., Ginting E.M., Bukit B.F. The Effect of Carbon Black Composition in Natural Rubber Compound. Case Stud. Therm. Eng. 2019;16:100566. doi: 10.1016/j.csite.2019.100566. DOI
Salaeh S., Nakason C. Influence of Modified Natural Rubber and Structure of Carbon Black on Properties of Natural Rubber Compounds. Polym. Compos. 2012;33:489–500. doi: 10.1002/pc.22169. DOI
Rattanasom N., Saowapark T., Deeprasertkul C. Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler. Polym. Test. 2007;26:369–377. doi: 10.1016/j.polymertesting.2006.12.003. DOI
Okoye C.O., Jones I., Zhu M., Zhang Z., Zhang D. Manufacturing of Carbon Black from Spent Tyre Pyrolysis Oil—A Literature Review. J. Clean. Prod. 2021;279:123336. doi: 10.1016/j.jclepro.2020.123336. DOI
Wahba L., D’Arienzo M., Donetti R., Hanel T., Scotti R., Tadiello L., Morazzoni F. In Situ Sol-Gel Obtained Silica-Rubber Nanocomposites: Influence of the Filler Precursors on the Improvement of the Mechanical Properties. RSC Adv. 2013;3:5832–5844. doi: 10.1039/c3ra22706e. DOI
Kumar V., Lee D.J. Studies of Nanocomposites Based on Carbon Nanomaterials and RTV Silicone Rubber. J. Appl. Polym. Sci. 2017;134:44407. doi: 10.1002/app.44407. DOI
Galimberti M., Kumar V., Coombs M., Cipolletti V., Agnelli S., Pandini S., Conzatti L. Filler networking of a nanographite with a high shape anisotropy and synergism with carbon black in poly(1,4-cis-isoprene)-based nanocomposites. Rubber Chem. Technol. 2014;87:197–218. doi: 10.5254/rct.13.87903. DOI
Bahl K., Miyoshi T., Jana S.C. Hybrid Fillers of Lignin and Carbon Black for Lowering of Viscoelastic Loss in Rubber Compounds. Polymer. 2014;55:3825–3835. doi: 10.1016/j.polymer.2014.06.061. DOI
Yu P., He H., Jia Y., Tian S., Chen J., Jia D., Luo Y. A Comprehensive Study on Lignin as a Green Alternative of Silica in Natural Rubber Composites. Polym. Test. 2016;54:176–185. doi: 10.1016/j.polymertesting.2016.07.014. DOI
Behazin E., Misra M., Mohanty A.K. Sustainable Biocarbon from Pyrolyzed Perennial Grasses and Their Effects on Impact Modified Polypropylene Biocomposites. Compos. B Eng. 2017;118:116–124. doi: 10.1016/j.compositesb.2017.03.003. DOI
Peterson S.C. Utilization of Low-Ash Biochar to Partially Replace Carbon Black in Styrene-Butadiene Rubber Composites. J. Elastomers Plast. 2013;45:487–497. doi: 10.1177/0095244312459181. DOI
Al-Kaabi Z., Pradhan R., Thevathasan N., Gordon A., Chiang Y.W., Dutta A. Bio-Carbon Production by Oxidation and Hydrothermal Carbonization of Paper Recycling Black Liquor. J. Clean. Prod. 2019;213:332–341. doi: 10.1016/j.jclepro.2018.12.175. DOI
Oliveira I., Blöhse D., Ramke H.G. Hydrothermal Carbonization of Agricultural Residues. Bioresour. Technol. 2013;142:138–146. doi: 10.1016/j.biortech.2013.04.125. PubMed DOI
Stemann J., Putschew A., Ziegler F. Hydrothermal Carbonization: Process Water Characterization and Effects of Water Recirculation. Bioresour. Technol. 2013;143:139–146. doi: 10.1016/j.biortech.2013.05.098. PubMed DOI
Mankar S.V., Garcia Gonzalez M.N., Warlin N., Valsange N.G., Rehnberg N., Lundmark S., Jannasch P., Zhang B. Synthesis, Life Cycle Assessment, and Polymerization of a Vanillin-Based Spirocyclic Diol toward Polyesters with Increased Glass-Transition Temperature. ACS Sustain. Chem. Eng. 2019;7:19090–19103. doi: 10.1021/acssuschemeng.9b04930. DOI
Gamgoum R., Dutta A., Santos R.M., Chiang Y.W. Hydrothermal Conversion of Neutral Sulfite Semi-Chemical Red Liquor into Hydrochar. Energies. 2016;9:435. doi: 10.3390/en9060435. DOI
Gao P., Zhou Y., Meng F., Zhang Y., Liu Z., Zhang W., Xue G. Preparation and Characterization of Hydrochar from Waste Eucalyptus Bark by Hydrothermal Carbonization. Energy. 2016;97:238–245. doi: 10.1016/j.energy.2015.12.123. DOI
Kambo H.S., Dutta A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015;45:359–378. doi: 10.1016/j.rser.2015.01.050. DOI
He C., Giannis A., Wang J.Y. Conversion of Sewage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior. Appl. Energy. 2013;111:257–266. doi: 10.1016/j.apenergy.2013.04.084. DOI
Sevilla M., Fuertes A.B. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon. 2009;47:2281–2289. doi: 10.1016/j.carbon.2009.04.026. DOI
Guo S., Dong X., Wu T., Shi F., Zhu C. Characteristic Evolution of Hydrochar from Hydrothermal Carbonization of Corn Stalk. J. Anal. Appl. Pyrolysis. 2015;116:1–9. doi: 10.1016/j.jaap.2015.10.015. DOI
Sabio E., Álvarez-Murillo A., Román S., Ledesma B. Conversion of Tomato-Peel Waste into Solid Fuel by Hydrothermal Carbonization: Influence of the Processing Variables. Waste Manag. 2016;47:122–132. doi: 10.1016/j.wasman.2015.04.016. PubMed DOI
Lu X., Jordan B., Berge N.D. Thermal Conversion of Municipal Solid Waste via Hydrothermal Carbonization: Comparison of Carbonization Products to Products from Current Waste Management Techniques. Waste Manag. 2012;32:1353–1365. doi: 10.1016/j.wasman.2012.02.012. PubMed DOI
Funke A., Ziegler F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining. 2010;4:160–177. doi: 10.1002/bbb.198. DOI
Yao M., Bi X., Wang Z., Yu P., Dufresne A., Jiang C. Recent Advances in Lignin-Based Carbon Materials and Their Applications: A Review. Int. J. Biol. Macromol. 2022;223:980–1014. doi: 10.1016/j.ijbiomac.2022.11.070. PubMed DOI
Lubura J., Kobera L., Abbrent S., Pavlova E., Strachota B., Bera O., Pavličević J., Ikonić B., Kojić P., Strachota A. Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler—Part I: Structure, Morphology, and Rheological Effects during Vulcanization. Polymers. 2023;15:1176. doi: 10.3390/polym15051176. PubMed DOI PMC
Lubura J., Kojić P., Ikonić B., Pavličević J., Govedarica D., Bera O. Influence of Biochar and Carbon Black on Natural Rubber Mixture Properties. Polym. Int. 2022;71:1347–1353. doi: 10.1002/pi.6439. DOI
Jovičić M., Bera O., Stojanov S., Pavličević J., Govedarica D., Bobinac I., Hollo B.B. Effects of Recycled Carbon Black Generated from Waste Rubber on the Curing Process and Properties of New Natural Rubber Composites. Polym. Bull. 2023;80:5047–5069. doi: 10.1007/s00289-022-04307-x. DOI
Kashi S., De Souza M., Al-Assafi S., Varley R. Understanding the Effects of In-Service Temperature and Functional Fluid on the Ageing of Silicone Rubber. Polymers. 2019;11:388. doi: 10.3390/polym11030388. PubMed DOI PMC
Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI
Mezger T. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers. 4th ed. Vincentz Network; Hanover, Germany: 2014.