Viruses and phospholipids: Friends and foes during infection

. 2023 Mar ; 95 (3) : e28658.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36905213

Viruses have evolved complex and dynamic interactions with their host cells to enable viral replication. In recent years, insights have been gained into the increasingly important role of the host cell lipidome in the life cycle of several viruses. In particular, viruses target phospholipid signaling, synthesis, and metabolism to remodel their host cells into an optimal environment for their replication cycle. Conversely, phospholipids and their associated regulatory enzymes can interfere with viral infection or replication. This review highlights examples of different viruses that illustrate the importance of these diverse virus-phospholipid interactions in different cellular compartments, particularly the role of nuclear phospholipids and their association with human papillomavirus (HPV)-mediated cancer development.

Zobrazit více v PubMed

Farías MA, Diethelm-Varela B, Navarro AJ, Kalergis AM, González PA. Interplay between lipid metabolism, lipid droplets, and DNA virus infections. Cells. 2022;11(14):2224.

Beziau A, Brand D, Piver E. The role of phosphatidylinositol phosphate kinases during viral infection. Viruses. 2020;12(10):1124.

Phan TK, Williams SA, Bindra GK, Lay FT, Poon IKH, Hulett MD. Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ. 2019;26(5):781-793.

Fiume R, Faenza I, Sheth B, et al. Nuclear phosphoinositides: their regulation and roles in nuclear functions. Int J Mol Sci. 2019;20(12):2991.

Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev. 2010;90(1):259-289.

Shewan A, Eastburn DJ, Mostov K. Phosphoinositides in cell architecture. Cold Spring Harbor Perspect Biol. 2011;3(8):a004796.

Dickson EJ, Hille B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J. 2019;476(1):1-23.

Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Phosphoinositides regulate ion channels. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851(6):844-856.

Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443(7112):651-657.

Bunce MW, Bergendahl K, Anderson RA. Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta Mol Cell Biol Lipids. 2006;1761(5-6):560-569.

Osborne SL, Meunier FA, Schiavo G. Phosphoinositides as key regulators of synaptic function. Neuron. 2001;32(1):9-12.

Sobol M, Krausova A, Yildirim S, et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci. 2018;131(8):jcs211094.

Hoboth P, Šebesta O, Sztacho M, Castano E, Hozák P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX. 2021;8:101372.

Hammond G, Thomas CL, Schiavo G. Nuclear phosphoinositides and their functions. Curr Top Microbiol Immunol. 2004;282:177-206.

Mellman DL, Gonzales ML, Song C, et al. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature. 2008;451(7181):1013-1017.

Lewis AE, Sommer L, Arntzen MØ, et al. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol Cell Proteomics. 2011;10(2):S1-S15.

Sztacho M, Šalovská B, Červenka J, Balaban C, Hoboth P, Hozák P. Limited proteolysis-coupled mass spectrometry identifies phosphatidylinositol 4,5-bisphosphate effectors in human nuclear proteome. Cells. 2021;10(1):68.

York JD, Odom AR, Murphy R, Ives EB, Wente SR. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 1999;285(5424):96-100.

Fáberová V, Kalasová I, Krausová A, Hozák P. Super-resolution localisation of nuclear PI(4)P and identification of its interacting proteome. Cells. 2020;9(5):1191.

Hoboth P, Sztacho M, Šebesta O, Schätz M, Castano E, Hozák P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(5):158890.

Cocco L, Martelli AM, Billi AM, et al. Phospholipids as components of the nuclear matrix: their possible biological significance. Basic Appl Histochem. 1987;31(3):413-419.

Irvine RF. Nuclear lipid signalling. Nat Rev Mol Cell Biol. 2003;4(5):349-361.

Numata M, Voelker DR. Anti-inflammatory and anti-viral actions of anionic pulmonary surfactant phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(6):159139.

Cao Q, Liu Z, Xiong Y, Zhong Z, Ye Q. Multiple roles of 25-hydroxycholesterol in lipid metabolism, antivirus process, inflammatory response, and cell survival. Oxid Med Cell Longevity. 2020;2020:1-11.

Gold ES, Diercks AH, Podolsky I, et al. 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci. 2014;111(29):10666-10671.

Liu SY, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity. 2013;38(1):92-105.

Li C, Deng YQ, Wang S, et al. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46(3):446-456.

Zu S, Deng YQ, Zhou C, et al. 25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Res. 2020;30(11):1043-1045.

Zang R, Case JB, Yutuc E, et al. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci. 2020;117(50):32105-32113.

Bassé F, Stout JG, Sims PJ, Wiedmer T. Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid. J Biol Chem. 1996;271(29):17205-17210.

Zhou Q, Zhao J, Stout JG, Luhm RA, Wiedmer T, Sims PJ. Molecular cloning of human plasma membrane phospholipid scramblase. J Biol Chem. 1997;272(29):18240-18244.

Dal Col J, Lamberti MJ, Nigro A, et al. Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors. Cell Commun Signal. 2022;20(1):78.

Huang P, Liao R, Chen X, et al. Nuclear translocation of PLSCR1 activates STAT1 signaling in basal-like breast cancer. Theranostics. 2020;10(10):4644-4658.

Morita S, Ikeda Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem Pharmacol. 2022;206:115296.

Bender FC, Whitbeck JC, Ponce de Leon M, Lou H, Eisenberg RJ, Cohen GH. Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol. 2003;77(17):9542-9552.

Gianni T, Gatta V, Campadelli-Fiume G. αVβ3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. Proc Natl Acad Sci. 2010;107(51):22260-22265.

Hambleton S, Steinberg SP, Gershon MD, Gershon AA. Cholesterol dependence of varicella-zoster virion entry into target cells. J Virol. 2007;81(14):7548-7558.

Low H, Mukhamedova N, Cui HL, et al. Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep. 2016;16(1):186-200.

Chung CS, Huang CY, Chang W. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts. J Virol. 2005;79(3):1623-1634.

Zhu YZ, Wu DG, Ren H, et al. The role of lipid rafts in the early stage of Enterovirus 71 infection. Cell Physiol Biochem. 2015;35(4):1347-1359.

Li X, Zhu W, Fan M, et al. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J. 2021;19:1933-1943.

Liao Z, Cimakasky LM, Hampton R, Nguyen DH, Hildreth JEK. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retroviruses. 2001;17(11):1009-1019.

Bravo IG, Crusius K, Alonso A. The E5 protein of the human papillomavirus type 16 modulates composition and dynamics of membrane lipids in keratinocytes. Arch Virol. 2005;150(2):231-246.

Crusius K, Kaszkin M, Kinzel V, Alonso A. The human papillomavirus type 16 E5 protein modulates phospholipase C-γ-1 activity and phosphatidyl inositol turnover in mouse fibroblasts. Oncogene. 1999;18(48):6714-6718.

Gong Q, Cheng M, Chen H, et al. Phospholipid scramblase 1 mediates hepatitis C virus entry into host cells. FEBS Lett. 2011;585(17):2647-2652.

Deffieu MS, Clément CMH, Dorobantu CM, et al. Occludin stalls HCV particle dynamics apart from hepatocyte tight junctions, promoting virion internalization. Hepatology. 2022;76(4):1164-1179.

Ono A, Freed EO. Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. J Virol. 2004;78(3):1552-1563.

Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci. 2004;101(41):14889-14894.

Kakisaka M, Yamada K, Yamaji-Hasegawa A, Kobayashi T, Aida Y. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2. Virology. 2016;496:116-126.

Kusano S, Eizuru Y. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription. Biochem Biophys Res Commun. 2013;433(4):438-444.

Yuan Y, Tian C, Gong Q, et al. Interactome map reveals phospholipid scramblase 1 as a novel regulator of hepatitis B virus x protein. J Proteome Res. 2015;14(1):154-163.

Luo W, Zhang J, Liang L, et al. Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathog. 2018;14(1):e1006851.

Chen Y, Wang S, Yi Z, et al. Interferon-inducible cholesterol-25-hydroxylase inhibits hepatitis C virus replication via distinct mechanisms. Sci Rep. 2014;4:7242.

Shrivastava-Ranjan P, Bergeron É, Chakrabarti AK, et al. 25-Hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation. mBio. 2016;7(6):e01808-16. doi:10.1128/mBio.01808-16

Blanc M, Hsieh WY, Robertson KA, et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity. 2013;38(1):106-118.

Civra A, Cagno V, Donalisio M, et al. Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci Rep. 2014;4:7487.

Lange PT, Schorl C, Sahoo D, Tarakanova VL. Liver X receptors suppress activity of cholesterol and fatty acid synthesis pathways to oppose gammaherpesvirus replication. mBio. 2018;9(4):e01115-18. doi:10.1128/mBio.01115-18

Mboko WP, Mounce BC, Emmer J, Darrah E, Patel SB, Tarakanova VL. Interferon regulatory factor 1 restricts gammaherpesvirus replication in primary immune cells. J Virol. 2014;88(12):6993-7004.

Cagno V, Civra A, Rossin D, et al. Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydroxycholesterol. Redox Biol. 2017;12:522-527.

Alvisi G, Madan V, Bartenschlager R. Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol. 2011;8(2):258-269.

Langeland N, Haarr L, Holmsen H. Polyphosphoinositide metabolism in baby-hamster kidney cells infected with herpes simplex virus type 1. Biochem J. 1986;237(3):707-712.

Langeland N, Moore LJ, Holmsen H, Haarr L. Herpes simplex virus-1-specific proteins are involved in alteration of polyphosphoinositide metabolism in baby-hamster kidney cells. Biochem J. 1989;261(2):683-686.

Sutter E, de Oliveira AP, Tobler K, et al. Herpes simplex virus 1 induces de novo phospholipid synthesis. Virology. 2012;429(2):124-135.

Munger J, Bennett BD, Parikh A, et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol. 2008;26(10):1179-1186.

Spencer CM, Schafer XL, Moorman NJ, Munger J. Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol. 2011;85(12):5814-5824.

Xu LX, Hao LJ, Ma JQ, Liu JK, Hasim A. SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase. Mol Cell Biochem. 2020;464(1-2):11-20.

Sadanari H, Takemoto M, Ishida T, et al. The interferon-inducible human PLSCR1 protein is a restriction factor of human cytomegalovirus. Microbiol Spectr. 2022;10(1):e0134221.

Kusano S, Ikeda M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription. J Biol Chem. 2019;294(41):15104-15116.

Shen Q, Wang YE, Palazzo AF. Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. J Biol Chem. 2021;297(1):100856.

De jesús-González LA, Palacios-Rápalo S, Reyes-Ruiz JM, et al. The nuclear pore complex is a key target of viral proteases to promote viral replication. Viruses. 2021;13(4):706.

Okada M, Jang SW, Ye K. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci. 2008;105(25):8649-8654.

Castano E, Yildirim S, Fáberová V, et al. Nuclear phosphoinositides-versatile regulators of genome functions. Cells. 2019;8(7):649.

Charman M, Weitzman MD. Replication compartments of DNA viruses in the nucleus: location, location, location. Viruses. 2020;12(2):151.

Schmid M, Speiseder T, Dobner T, Gonzalez RA. DNA virus replication compartments. J Virol. 2014;88(3):1404-1420.

Hoboth P, Šebesta O, Hozák P. How single-molecule localization microscopy expanded our mechanistic understanding of RNA polymerase II transcription. Int J Mol Sci. 2021;22(13):6694.

Rensen E, Mueller F, Scoca V, et al. Clustering and reverse transcription of HIV-1 genomes in nuclear niches of macrophages. EMBO J. 2021;40(1):e105247.

Boronenkov JV, Loijens JC, Umeda M, Anderson RA. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell. 1998;9(12):3547-3560.

Osborne SL, Thomas CL, Gschmeissner S, Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci. 2001;114(Pt 13):2501-2511.

Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR, Henne WM. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep. 2018;19(1):57-72.

Romanauska A, Köhler A. The inner nuclear membrane is a metabolically active territory that generates nuclear lipid droplets. Cell. 2018;174(3):700-715.e18.

Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E, Fujimoto T. PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol. 2016;212(1):29-38.

Cloherty APM, Olmstead AD, Ribeiro CMS, Jean F. Hijacking of lipid droplets by hepatitis C, dengue and Zika viruses-from viral protein moonlighting to extracellular release. Int J Mol Sci. 2020;21(21):7901.

Manzoli FA, Maraldi NM, Cocco L, Capitani S, Facchini A. Chromatin phospholipids in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res. 1977;37(3):843-849.

Chen M, Wen T, Horn HT, et al. The nuclear phosphoinositide response to stress. Cell Cycle. 2020;19(3):268-289.

Smith CD, Wells WW. Solubilization and reconstitution of a nuclear envelope-associated ATPase. Synergistic activation by RNA and polyphosphoinositides. J Biol Chem. 1984;259(19):11890-11894.

Smith CD, Wells WW. Phosphorylation of rat liver nuclear envelopes. I. Characterization of in vitro protein phosphorylation. J Biol Chem. 1983;258(15):9360-9367.

Zhao K, Wang W, Rando OJ, et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 1998;95(5):625-636.

Mazloumi Gavgani F, Slinning MS, Morovicz AP, et al. Nuclear phosphatidylinositol 3,4,5-trisphosphate interactome uncovers an enrichment in nucleolar proteins. Mol Cell Proteomics. 2021;20:100102.

Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P2 signaling specificity by association with effectors. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851(6):711-723.

Rorke EA, Zhang D, Choo CK, Eckert RL, Jacobberger JW. TGF-β-mediated cell cycle arrest of HPV16-Immortalized human ectocervical cells correlates with decreased E6/E7 mRNA and increased p53 and p21WAF-1 expression. Exp Cell Res. 2000;259(1):149-157.

Shah ZH, Jones DR, Sommer L, et al. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J. 2013;280(24):6295-6310.

Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A phase separation model for transcriptional control. Cell. 2017;169(1):13-23.

Cho WK, Spille JH, Hecht M, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412-415.

McSwiggen DT, Hansen AS, Teves SS, et al. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife. 2019;8:e47098. doi:10.7554/eLife.47098

Jungmichel S, Sylvestersen KB, Choudhary C, Nguyen S, Mann M, Nielsen ML. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep. 2014;6(3):578-591.

Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE, Hozák P. Nuclear phosphoinositides and phase separation: important players in nuclear compartmentalization. Adv Biol Regul. 2019;71:111-117.

Marx B, Hufbauer M, Zigrino P, et al. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget. 2018;9(75):34142-34158.

Ochoa B, Chico Y, Martínez MJ. Insights into SND1 oncogene promoter regulation. Front Oncol. 2018;8:606.

Che Z, Liu F, Zhang W, et al. Targeting CAND1 promotes caspase-8/RIP1-dependent apoptosis in liver cancer cells. Am J Transl Res. 2018;10(5):1357-1372.

Oswald E, Reinz E, Voit R, Aubin F, Alonso A, Auvinen E. Human papillomavirus type 8 E7 protein binds nuclear myosin 1c and downregulates the expression of pre-rRNA. Virus Genes. 2017;53(6):807-813.

Sankovski E, Abroi A, Ustav M, Jr., Ustav M. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Virology. 2018;514:142-155.

Balaban C, Sztacho M, Blažíková M, Hozák P. The F-Actin-bnding MPRIP forms phase-separated condensates and associates with PI(4,5)P2 and active RNA polymerase II in the cell nucleus. Cells. 2021;10(4):848.

McKinney CC, Kim MJ, Chen D, McBride AA. Brd4 activates early viral transcription upon human papillomavirus 18 infection of primary keratinocytes. mBio. 2016;7:e01644-16.

Yigitliler A, Renner J, Simon C, Schneider M, Stubenrauch F, Iftner T. BRD4S interacts with viral E2 protein to limit human papillomavirus late transcription. J Virol. 2021;95(11):e02032-20.

Wang YH, Hariharan A, Bastianello G, et al. DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat Commun. 2017;8(1):2118.

Wang YH, Sheetz MP. When PIP(2) meets p53: nuclear phosphoinositide signaling in the DNA damage response. Front Cell Dev Biol. 2022;10:903994.

Wallace NA, Khanal S, Robinson KL, Wendel SO, Messer JJ, Galloway DA. High-risk alphapapillomavirus oncogenes impair the homologous recombination pathway. J Virol. 2017;91(20):e01084-17. doi:10.1128/JVI.01084-17

Hufbauer M, Cooke J, van der Horst GTJ, Pfister H, Storey A, Akgül B. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Mol Cancer. 2015;14:183.

Akgül B, Kirschberg M, Storey A, Hufbauer M. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1. Int J Cancer. 2019;145(3):797-806.

Snow JA, Murthy V, Dacus D, Hu C, Wallace NA. β-HPV 8E6 attenuates ATM and ATR signaling in response to UV damage. Pathogens. 2019;8(4):267.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...