Aquatic quillworts, Isoëtes echinospora and I. lacustris under acidic stress-A review from a temperate refuge

. 2023 Mar ; 13 (3) : e9878. [epub] 20230308

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36911304

Quillworts (Isoëtes) represent highly specialized flora of softwater lakes, that is, freshwater ecosystems potentially sensitive to acidification. In this paper, we combine a review of previous studies and our new results to address unrecognized reproduction strategies of quillworts to overcome long-term environmental stresses. These strategies play an important role in the plant's ability to overcome atmospheric acidification of freshwaters, protecting the plants until their environment can recover. Environmental drivers of recovery of Isoëtes echinospora and I. lacustris were studied in two acidified lakes in the Bohemian Forest (Central Europe). Both populations survived more than 50 years of severe acidification, although they failed to recruit new sporelings. Their survival depended entirely on the resistance of long-living adult plants because the quillworts do not grow clonally. During the past two decades, a renewal of I. echinospora population inhabiting Plešné Lake has been observed, while no such renewal of I. lacustris, dwelling in Černé Lake, was evident, despite similar changes in water composition occurring in both lakes undergoing advanced recovery from acidification. Our in vitro experiments revealed that the threshold acidity and toxic aluminium concentrations for sporeling survival and recruitment success differed between I. echinospora (pH ≤ 4.0 and ≥300 μg L-1 Al at pH 5) and I. lacustris (pH ≤ 5.0 and ≥100 μg L-1Al at pH 5). The higher sensitivity of I. lacustris to both stressors likely stems from its year-long germination period and underlines the risk of exposure to chronic or episodic acidification in recovering lakes. By contrast, the shorter germination period of I. echinospora (2-3 months) enables its faster and deeper rooting, protecting this quillwort from periodic acidification during the next snowmelt. Our study brings novel insights into widely discussed environmental issues related to the long-term degradation of softwater lakes, which represent important hotspots of pan-European biodiversity and conservation efforts.

Zobrazit více v PubMed

Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press.

Arts, G. H. (2002). Deterioration of Atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquatic Botany, 73, 373–393.

Baastrup‐Spohr, L. , Sand‐Jensen, K. , Olesen, S. C. , & Bruun, H. H. (2017). Recovery of lake vegetation following reduced eutrophication and acidification. Freshwater Biology, 62, 1847–1857.

Ballesteros, E. , Gacia, E. , & Camarero, L. (1989). Composition, distribution and biomass of benthic macrophyte communities from Lake Baciver, a Spanish alpine lake in the Central Pyrenees. Annales de Limnologie ‐ International Journal of Limnology, 25, 177–184.

Barko, J. W. , & Smart, R. M. (1981). Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs, 51, 219–235.

Bennert, W.H. , Horn, K. , Benemann, J. , & Heiser, T. , 1999. Die seltenen und gefährdeten Farnpflanzen Deutschlands. Biologie, Verbreitung, Schutz. Bundesamt für Naturschutz (pp. 87–106).

Black, B. A. , Lamarque, J. F. , Shields, C. A. , Elkins‐Tanton, L. T. , & Kiehl, J. T. (2014). Acid rain and ozone depletion from pulsed Siberian traps magmatism. Geology, 42, 67–70.

Bond, D. P. G. , Wignall, P. B. , Joachimski, M. M. , Sun, Y. , Savov, I. , Grasby, S. E. , Beauchamp, B. , & Blomeier, D. P. G. (2015). An abrupt extinction in the middle Permian (Capitanian) of the boreal realm (Spitsbergen) and its link to anoxia and acidification. Bulletin, 127, 1411–1421.

Brandrud, T. E. (2002). Effects of liming on aquatic macrophytes, with emphasis on Scandinavia. Aquatic Botany, 73, 395–404.

Bray, R. D. , Schafran, P. W. , & Musselman, L. J. (2018). Interesting, provocative, and enigmatic: Morphological observations on southeastern quillworts (Isoetes Isoetaceae, Lycopodiophyta). Castanea, 83, 263–269.

Brouwer, E. , Bobbink, R. , & Roelofs, J. G. (2002). Restoration of aquatic macrophyte vegetation in acidified and eutrophied softwater lakes: An overview. Aquatic Botany, 73, 405–431.

Caines, L. A. , Watt, A. W. , & Wells, D. E. (1985). The uptake and release of some trace metals by aquatic bryophytes in acidified waters in Scotland. Environmental Pollution Series B, Chemical and Physical, 10, 1–18.

Caldeira, C. F. , Lopes, A. V. S. , Aguiar, K. C. , Ferreira, A. L. , Araujo, J. V. S. , Gomes, V. M. S. , Zandonadi, D. B. , Abranches, C. B. , Ramos, S. J. , Gastauer, M. , Campos, N. V. , Gestinari, L. M. S. , Prado, L. A. , Santos, F. M. G. , Martins, R. L. , Esteves, F. A. , Oliveira, G. , & Santos, M. P. (2021). Distinct reproductive strategy of two endemic amazonian quillworts. Diversity, 13(8), 348.

Campbell, D. H. (1891). Contribution to the life history of Isoëtes . Annals of Botany, 5, 231–256.

Chevin, L. M. , & Lande, R. (2011). Adaptation to marginal habitats by evolution of increased phenotypic plasticity. Journal of Evolutionary Biology, 24, 1462–1476. PubMed

Chu, D. , Corso, J. D. , Shu, W. , Song, H. , Wignall, P. B. , Grasby, S. E. , Schootbrugge, B. , Zong, K. , Wu, Y. , & Tong, J. (2021). Metal‐induced stress in survivor plants following the end‐Permian collapse of land ecosystems. Geology, 49, 657–661.

Čtvrtlíková, M. , Hejzlar, J. , Vrba, J. , Kopáček, J. , Nedoma, J. , Hekera, P. , Wade, A. J. , & Roy, S. (2016). Lake water acidification and temperature have a lagged effect on the population dynamics of Isoëtes echinospora via offspring recruitment. Ecologial Indicators, 70, 420–430.

Čtvrtlíková, M. , Kopáček, J. , Nedoma, J. , Znachor, P. , & Vrba, J. (2020). Only the adults survive–a long‐term resistance of Isoëtes lacustris to acidity and aluminium toxicity stress in a Bohemian Forest lake. Ecological Indicators, 111, 106026.

Čtvrtlíková, M. , Vrba, J. , Znachor, P. , & Hekera, P. (2009). The effects of aluminium toxicity and low pH on the early development of Isoëtes echinospora . Preslia, 81, 135–149.

Čtvrtlíková, M. , Znachor, P. , Nedoma, J. , & Vrba, J. (2012). Effects of temperature on the phenology of germination of Isoëtes echinospora . Preslia, 84, 141–153.

Čtvrtlíková, M. , Znachor, P. , & Vrba, J. (2014). The effect of temperature on the phenology of germination of Isoëtes lacustris . Preslia, 86, 279–292.

Dakos, V. , Carpenter, S. R. , Nes, E. H. , & Scheffer, M. (2015). Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20130263.

Driscoll, C. T. (1984). A procedure for the fractionation of aqueous aluminum in dilute acidic waters. International Journal of Environmental Analytical Chemistry, 16(267), 284.

Eames, A. J. (1936). Morphology of vascular plants. Lower Groups (Psilophytales to Filicales). McGraw‐Hill Book Company, New York.

Farmer, A. M. (1990). The effects of lake acidification on aquatic macrophytes—A review. Environmental Pollution, 65, 219–240. PubMed

Forsman, A. (2015). Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity, 115, 276–284. PubMed PMC

Foster, S. , & Gifford, E. M. (1959). Comparative morphology of vascular plants. W. H. Freeman and Company, San Francisco.

Gacia, E. , & Ballesteros, E. (1994). Production of Isoëtes lacustris in a Pyrenean lake: Seasonality and ecological factors involved in the growing period. Aquatic Botany, 48, 77–89.

George, D. G. (Ed.). (2010). The impact of climate change on European Lakes. Springer, Dordrecht.

Gran, G. (1950). Determination of the equivalence point in potentiometric titration. Acta Chemica Scandinavica, 4, 559–577.

Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1194.

Grime, J. P. (2002). Declining plant diversity: Empty niches or functional shifts? Journal of Vegetation Science, 13, 457–460.

Hendry, C. D. , & Brezonik, P. L. (1984). Chemical composition of softwater Florida Lakes and their sensitivity to acid precipitation. Journal of the American Water Resources Association, 20, 75–86.

Herlihy, A. T. , & Mills, A. L. (1986). The pH regime of sediments underlying acidified waters. Biogeochemistry, 2, 95–99.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

Husák, S. , Vöge, M. , & Weilner, C. (2000). Isoëtes echinospora and I. lacustris in the Bohemian Forest lakes in comparison with other European sites. Silva Gabreta, 4, 245–252.

Hutchinson, G. E. (1975). A treatise on limnology. Limnological Botany. Wiley‐Interscience, New York.

Kaňa, J. , Kopáček, J. , Tahovská, K. , & Šantrůčková, H. (2019). Tree dieback and related changes in nitrogen dynamics modify the concentrations and proportions of cations on soil sorption complex. Ecological Indicators, 97, 319–328.

Kaňa, J. , Tahovská, K. , & Kopáček, J. (2013). Response of soil chemistry to forest dieback after bark beetle infestation. Biogeochemistry, 113, 369–383.

Keeley, J. E. (2014). Aquatic CAM photosynthesis: A brief history of its discovery. Aquatic Botany, 118, 38–44.

Kelly, C. A. , Rudd, J. W. M. , Furutani, A. , & Schindler, D. W. (1984). Effects of lake acidification on rates of organic matter decomposition in sediments. Limnology and Oceanography, 29, 687–694.

Kopáček, J. , Brzáková, M. , Hejzlar, J. , Nedoma, J. , Porcal, P. , & Vrba, J. (2004). Nutrient cycling in a strongly acidified mesotrophic lake. Limnology and Oceanography, 49, 1202–1213.

Kopáček, J. , Evans, C. D. , Hejzlar, J. , Kaňa, J. , Porcal, P. , & Šantrůčková, H. (2018). Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environmental Science & Technology, 52(6291), 6299. PubMed

Kopáček, J. , Fluksová, H. , Hejzlar, J. , Kaňa, J. , Porcal, P. , & Turek, J. (2017). Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. Science of the Total Environment, 584–585, 971–981. PubMed

Kopáček, J. , & Hejzlar, J. (1993). Semi–micro determination of total phosphorus in fresh waters with perchloric acid digestion. International Journal of Environmental Analytical Chemistry, 53, 173–183.

Kopáček, J. , Hejzlar, J. , Krám, P. , Oulehle, F. , & Posch, M. (2016). Effect of industrial dust on precipitation chemistry in The Czech Republic (Central Europe) from 1850 to 2013. Water Research, 103, 30–37. PubMed

Kopáček, J. , Hejzlar, J. , & Mosello, R. (2000). Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Research, 34, 3598–3606.

Kopáček, J. , Hejzlar, J. , Vrba, J. , & Stuchlík, E. (2011). Phosphorus loading of mountain lakes: Terrestrial export and atmospheric deposition. Limnology and Oceanography, 56, 1343–1354.

Kopáček, J. , Kaňa, J. , Porcal, P. , Vrba, J. , & Norton, S. A. (2019). Effects of tree dieback on Lake water acidity in the unmanaged catchment of Plešné lake, Czech Republic. Limnology and Oceanography, 64, 1614–1626.

Kopáček, J. , Ulrich, K. U. , Hejzlar, J. , Borovec, J. , & Stuchlík, E. (2001). Natural inactivation of phosphorus by aluminium in atmospherically acidified water bodies. Water Research, 35, 3783–3790. PubMed

Kott, L. S. , & Britton, D. M. (1983). Spore morphology and taxonomy of Isoëtes in northeastern North America. Canadian Journal of Botany, 61, 3140–3163.

Lindström, S. , Sanei, H. , Van de Schootbrugge, B. , Pedersen, G. K. , Lesher, C. E. , Tegner, C. , Heunisch, C. , Dybkjær, K. , & Outridge, P. M. (2019). Volcanic mercury and mutagenesis in land plants during the end‐Triassic mass extinction. Science Advances, 5, 4018. PubMed PMC

Looy, C. V. , Konijnenburg‐van Cittert, J. H. , & Duijnstee, I. A. (2021). Proliferation of Isoëtalean lycophytes during the Permo‐Triassic biotic crises: A proxy for the state of the terrestrial biosphere. Frontiers in Earth Science, 9, 55.

Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnology and Oceanography, 12, 343–346.

Lucassen, E. C. , Roelofs, J. G. , Schneider, S. C. , & Smolders, A. J. (2016). Long‐term effects of liming in Norwegian softwater lakes: The rise and fall of bulbous rush (Juncus bulbosus) and decline of isoetid vegetation. Freshwater Biology, 61, 769–782.

Ma, J. F. (2007). Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. International Review of Cytology, 264, 225–252. PubMed

Madsen, T. V. , Olesen, B. , & Bagger, J. (2002). Carbon acquisition and carbon dynamics by aquatic isoetids. Aquatic Botany, 73, 351–371.

Maessen, M. , Roelofs, J. G. M. , Bellemakers, M. J. S. , & Verheggen, G. M. (1992). The effects of aluminium, aluminium/calcium ratios and pH on aquatic plants from poorly buffered environments. Aquatic Botany, 43, 115–127.

Majer, V. , Cosby, B. J. , Kopáček, J. , & Veselý, J. (2003). Modelling reversibility of central European Mountain lakes from acidification: Part I. the Bohemian Forest. Hydrology and Earth System Sciences, 7, 494–509.

Mjelde, M. , Hellsten, S. , & Ecke, F. (2013). A water level drawdown index for aquatic macrophytes in Nordic lakes. Hydrobiologia, 704, 141–151.

Moeller, R. E. (1978). Seasonal changes in biomass, tissue chemistry, and net production of the evergreen hydrophyte, Lobelia dortmanna . Canadian Journal of Botany, 56, 1425–1433.

Moldan, F. , Cosby, B. J. , & Wright, R. F. (2013). Modeling past and future acidification of Swedish lakes. Ambio, 42, 577–586. PubMed PMC

Murphy, K. J. (2002). Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany, 73, 287–324.

Pereira, J. , Labiak, P. H. , Stützel, T. , & Schulz, C. (2017). Origin and biogeography of the ancient genus Isoëtes with focus on the neotropics. Botanical Journal of the Linnean Society, 185, 253–271.

Pigg, K. B. (2001). Isoetalean lycopsid evolution: From the Devonian to the present. American Fern Journal, 91, 99–114.

Pisarzowska, A. , Rakociński, M. , Marynowski, L. , Szczerba, M. , Thoby, M. , Paszkowski, M. , Perri, M. C. , Spalleta, C. , Schönlaub, H. P. , Kowalik, N. , & Gereke, M. (2020). Large environmental disturbances caused by magmatic activity during the late Devonian Hangenberg crisis. Global and Planetary Change, 190, 103155.

Procházková, L. (1960). Einfluss der Nitrate und Nitrite auf die Bestimmung des organischen Stickstoffs und Ammonimus im Wasser. Archiv für Hydrobiologie, 56, 179–185.

Procházková, L. , & Blažka, P. (1999). Chemismus a oživení šumavských jezer na počátku 60‐tých let. [chemistry and biology of the Bohemian Forest lakes in the early 1960 s]. Silva Gabreta, 3, 65–72.

Racki, G. (2020). A volcanic scenario for the Frasnian–Famennian major biotic crisis and other late Devonian global changes: More answers than questions? Global and Planetary Change, 189, 103174.

Raddum, G. G. , & Fjellheim, A. (1984). Acidification and early warning organisms in freshwater in western Norway: With 5 figures and 1 table in the text. Internationale Vereinigung für Theoretische Und Angewandte Limnologie: Verhandlungen, 22, 1973–1980.

Rakociński, M. , Marynowski, L. , Pisarzowska, A. , Bełdowski, J. , Siedlewicz, G. , Zatoń, M. , Perri, M. C. , Spalletta, C. , & Schönlaub, H. P. (2020). Volcanic related methylmercury poisoning as the possible driver of the end‐Devonian mass extinction. Scientific Reports, 10, 1–8. PubMed PMC

Reed, T. E. , Schindler, D. E. , & Waples, R. S. (2011). Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservation Biology, 25, 56–63. PubMed PMC

Retallack, G. J. (1997). Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. Journal of Paleontology, 71, 500–521.

Roelofs, J. G. M. , Brouwer, E. , & Bobbink, R. (2002). Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in The Netherlands. In Ecological restoration of aquatic and semi‐aquatic ecosystems in the Netherlands (NW Europe) (pp. 171–180). Springer, Dordrecht.

Rørslett, B. (1985). Death of submerged macrophytes—Actual field observations and some implications. Aquatic Botany, 22, 7–19.

Rørslett, B. (1989). An integrated approach to hydropower impact assessment. II. Submerged macrophytes in some Norwegian hydro‐electric lakes. Hydrobiologia, 175, 65–82.

Rørslett, B. , & Brettum, P. (1989). The genus Isoëtes in Scandinavia: An ecological review and perspectives. Aquatic Botany, 35, 223–261.

Rout, G. , Samantaray, S. , & Das, P. (2001). Aluminium toxicity in plants: A review. Agronomie, 21, 3–21.

Schindler, D. W. (1988). Effects of acid rain on freshwater ecosystems. Science, 239, 149–157. PubMed

Schmidt, S. I. , Hejzlar, J. , Kopáček, J. , Paule‐Mercado, M. C. , Porcal, P. , Vystavna, Y. , & Lanta, V. (2022). Forest damage and subsequent recovery alter the water composition in mountain lake catchments. Science of the Total Environment, 827, 154293. PubMed

Schuurkes, J. A. A. R. , Kok, C. J. , & Den Hartog, C. (1986). Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquatic Botany, 24, 131–146.

Sherman, J. W. , & Fairchild, G. W. (1994). The interaction between acidity and nutrient chemistry in softwater lakes of northeastern Pennsylvania. Journal of the Pennsylvania Academy of Science, 1994, 56–62.

Skjelkvåle, B. L. , Wright, R. F. , & Henriksen, A. (1998). Norwegian lakes show widespread recovery from acidification; results from national surveys of lake water chemistry 1986–1997. Hydrology and Earth System Sciences, 2, 555–562.

Smolders, A. J. P. , Lucassen, E. C. H. E. T. , & Roelofs, J. G. M. (2002). The isoetid environment: Biogeochemistry and threats. Aquatic Botany, 73, 325–350.

Šobr, M. , & Jánský, B. (2016). The morphometric parameters of glacial lakes in the Bohemian Forest. Silva Gabreta, 22, 31–61.

Stoddard, J. L. , Jeffries, D. S. , Lükewille, A. , Clair, T. A. , Dillon, P. J. , Driscoll, C. T. , Forsius, M. , Johannessen, M. , Kahl, J. S. , Kellogg, J. H. , Kemp, A. , Mannio, J. , Monteith, D. T. , Murdoch, P. S. , Patrick, S. , Rebsdorf, A. , Skjelkvåle, B. L. , Stainton, M. P. , Traaen, T. , … Wilander, A. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578.

Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537–542. PubMed

Szmeja, J. (1994). Effects of disturbances and interspecific competition in isoetid populations. Aquatic Botany, 48, 225–238.

Taylor, W. C. , & Hickey, R. J. (1992). Habitat, evolution, and speciation in Isoetes . Annals of the Missouri Botanical Garden, 79, 613–622.

Van de Schootbrugge, B. , Quan, T. M. , Lindström, S. , Püttmann, W. , Heunisch, C. , Pross, J. , Fiebig, J. , Petschick, R. , Röhling, H. G. , Richoz, S. , & Rosenthal, Y. (2009). Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2, 589–594.

Veselý, J. , Hruška, J. , Norton, S. A. , & Johnson, C. E. (1998). Trends in water chemistry of acidified Bohemian lakes from 1984 to 1995: I. Major solutes. Water, Air & Soil Pollution, 108, 107–127.

Vrba, J. , Bojková, J. , Chvojka, P. , Fott, J. , Kopáček, J. , Macek, M. , Nedbalová, L. , Papáček, M. , Rádková, V. , & Sacherová, V. (2016). Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshwater Biology, 61, 376–395.

Vrba, J. , Kopáček, J. , Fott, J. , Kohout, L. , Nedbalová, L. , Pražáková, M. , Soldán, T. , & Schaumburg, J. (2003). Long‐term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Science of the Total Environment, 310, 73–85. PubMed

Wagner, P. (1897). Die Seen des Böhmerwaldes: eine geologisch‐geographische Studie zugleich ein Beitrag zur Lösung des Karproblems; mit 4 Beilagen. Duncker & Humblot, Leipzig.

Wright, R. F. , Dale, T. , Gjessing, E. T. , Hendrey, G. R. , Henriksen, A. , Johannessen, M. , & Muniz, I. P. (1976). Impact of acid precipitation on freshwater ecosystems in Norway. Water, Air & Soil Pollution, 6, 483–499.

Wright, R. F. , Larssen, T. , Camarero, L. , Cosby, B. J. , Ferrier, R. C. , Helliwell, R. , Forsius, M. , Jenkins, A. , Kopáček, J. , Majer, V. , & Moldan, F. (2005). Recovery of acidified European surface waters. Environmental Science & Technology, 39, 64–72. PubMed

Yeh, P. J. , & Price, T. D. (2004). Adaptive phenotypic plasticity and the successful colonisation of a novel environment. American Naturalist, 164, 531–542. PubMed

Zhang, H. , Zhang, F. , Chen, J. , Erwin, D. H. , Syverson, D. D. , Ni, P. , Rampino, M. , Chi, Z. , Cai, Y. F. , Xiang, L. , & Li, W. Q. (2021). Felsic volcanism as a factor driving the end‐Permian mass extinction. Science Advances, 7, 1390. PubMed PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.nvx0k6dx2

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace