Free Energy Differences from Molecular Simulations: Exact Confidence Intervals from Transition Counts

. 2023 Apr 11 ; 19 (7) : 2102-2108. [epub] 20230316

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36926862

Here, we demonstrate a method to estimate the uncertainty (confidence intervals and standard errors) of free energy differences calculated by molecular simulations. The widths of confidence intervals and standard errors can be calculated solely from temperature and the number of transitions between states. Uncertainty (95% confidence interval) lower than ±1 kcal/mol can be achieved by a simulation with four forward and four reverse transitions. For a two-state Markovian system, the confidence interval is exact, regardless the number of transitions.

Zobrazit více v PubMed

Flyvbjerg H.; Petersen H. G. Error estimates on averages of correlated data. J. Chem. Phys. 1989, 91, 461–466. 10.1063/1.457480. DOI

Bussi G.; Tribello G. A. In Biomolecular Simulations: Methods and Protocols; Bonomi M., Camilloni C., Eds.; Springer: New York, NY, 2019; pp 529–578.

Klimovich P. V.; Shirts M. R.; Mobley D. L. Guidelines for the analysis of free energy calculations. J. Comput. Aided Mol. Des. 2015, 29, 397–411. 10.1007/s10822-015-9840-9. PubMed DOI PMC

Fisher R. A. On the interpretation of χ2 from contingency tables and the calculation of P. J. R. Stat. Soc. 1922, 85, 87–94. 10.2307/2340521. DOI

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.

Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 10.1021/ct700301q. PubMed DOI

O’Boyle N. M.; Banck M.; James C. A.; Morley C.; Vandermeersch T.; Hutchison G. R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33.10.1186/1758-2946-3-33. PubMed DOI PMC

Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC

Bayly C. I.; Cieplak P.; Cornell W.; Kollman P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993, 97, 10269–10280. 10.1021/j100142a004. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI

Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI

Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Com. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI

Lindorff-Larsen K.; Piana S.; Dror R. O.; Shaw D. E. How Fast-Folding Proteins Fold. Science 2011, 334, 517–520. 10.1126/science.1208351. PubMed DOI

Yongye A. B.; Foley B. L.; Woods R. J. On Achieving Experimental Accuracy from Molecular Dynamics Simulations of Flexible Molecules: Aqueous Glycerol. J. Phys. Chem. A 2008, 112, 2634–2639. 10.1021/jp710544s. PubMed DOI PMC

van Koningsveld H. A conformational study on glycerol in a D2O solution by means of 220 Mc PMR data. Recueil des Travaux Chimiques des Pays-Bas 1970, 89, 801–812. 10.1002/recl.19700890806. DOI

Ayaz C.; Tepper L.; Brünig F. N.; Kappler J.; Daldrop J. O.; Netz R. R. Non-Markovian modeling of protein folding. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e202385611810.1073/pnas.2023856118. PubMed DOI PMC

Bowman G. R.; Pande V. S.; Noé F.. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation; Springer: Dordrecht, 2014.

Torrie G.; Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. 10.1016/0021-9991(77)90121-8. DOI

Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Analysis of metadynamics simulations by metadynminer.py

. 2024 Oct 01 ; 40 (10) : .

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...