Free Energy Differences from Molecular Simulations: Exact Confidence Intervals from Transition Counts
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36926862
PubMed Central
PMC10100533
DOI
10.1021/acs.jctc.2c01237
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Here, we demonstrate a method to estimate the uncertainty (confidence intervals and standard errors) of free energy differences calculated by molecular simulations. The widths of confidence intervals and standard errors can be calculated solely from temperature and the number of transitions between states. Uncertainty (95% confidence interval) lower than ±1 kcal/mol can be achieved by a simulation with four forward and four reverse transitions. For a two-state Markovian system, the confidence interval is exact, regardless the number of transitions.
Zobrazit více v PubMed
Flyvbjerg H.; Petersen H. G. Error estimates on averages of correlated data. J. Chem. Phys. 1989, 91, 461–466. 10.1063/1.457480. DOI
Bussi G.; Tribello G. A. In Biomolecular Simulations: Methods and Protocols; Bonomi M., Camilloni C., Eds.; Springer: New York, NY, 2019; pp 529–578.
Klimovich P. V.; Shirts M. R.; Mobley D. L. Guidelines for the analysis of free energy calculations. J. Comput. Aided Mol. Des. 2015, 29, 397–411. 10.1007/s10822-015-9840-9. PubMed DOI PMC
Fisher R. A. On the interpretation of χ2 from contingency tables and the calculation of P. J. R. Stat. Soc. 1922, 85, 87–94. 10.2307/2340521. DOI
R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 10.1021/ct700301q. PubMed DOI
O’Boyle N. M.; Banck M.; James C. A.; Morley C.; Vandermeersch T.; Hutchison G. R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33.10.1186/1758-2946-3-33. PubMed DOI PMC
Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Bayly C. I.; Cieplak P.; Cornell W.; Kollman P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993, 97, 10269–10280. 10.1021/j100142a004. DOI
Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Com. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Lindorff-Larsen K.; Piana S.; Dror R. O.; Shaw D. E. How Fast-Folding Proteins Fold. Science 2011, 334, 517–520. 10.1126/science.1208351. PubMed DOI
Yongye A. B.; Foley B. L.; Woods R. J. On Achieving Experimental Accuracy from Molecular Dynamics Simulations of Flexible Molecules: Aqueous Glycerol. J. Phys. Chem. A 2008, 112, 2634–2639. 10.1021/jp710544s. PubMed DOI PMC
van Koningsveld H. A conformational study on glycerol in a D2O solution by means of 220 Mc PMR data. Recueil des Travaux Chimiques des Pays-Bas 1970, 89, 801–812. 10.1002/recl.19700890806. DOI
Ayaz C.; Tepper L.; Brünig F. N.; Kappler J.; Daldrop J. O.; Netz R. R. Non-Markovian modeling of protein folding. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e202385611810.1073/pnas.2023856118. PubMed DOI PMC
Bowman G. R.; Pande V. S.; Noé F.. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation; Springer: Dordrecht, 2014.
Torrie G.; Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. 10.1016/0021-9991(77)90121-8. DOI
Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Analysis of metadynamics simulations by metadynminer.py