Analysis of metadynamics simulations by metadynminer.py
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Czech Science Foundation
PubMed
39423115
PubMed Central
PMC11512590
DOI
10.1093/bioinformatics/btae614
PII: 7826610
Knihovny.cz E-zdroje
- MeSH
- simulace molekulární dynamiky * MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
MOTIVATION: Molecular dynamics simulation is very useful but computationally demanding method of studying dynamics of biomolecular systems. Many enhanced sampling methods were developed in order to obtain the desired results in available computational time. Metadynamics and its variants are common enhanced sampling methods used for this purpose. Metadynamics simulations allow the user to gather large amounts of data, which have to be analyzed to elucidate the properties of the studied system. RESULTS: Here, we present metadynminer.py, a Python package that allows easy and user-friendly analysis and visualization of the results obtained from metadynamics simulations. The built-in functions automate frequent tasks and make the package easy to use for new users, while its many customization options and object-oriented nature allow for integration into specialized data analysis workflows by more advanced users. AVAILABILITY AND IMPLEMENTATION: The "metadynminer.py" Python package is available under the GPL-3.0 license via PyPi and Conda. The development version is available on GitHub along with issue support (https://github.com/Jan8be/metadynminer.py). Documentation, tutorial and Jupyter Notebook (provided through the public mybinder.org service) are available at https://metadynreporter.cz.
Zobrazit více v PubMed
Barducci A, Bussi G, Parrinello M.. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 2008;100:020603. 10.1103/PhysRevLett.100.020603 PubMed DOI
Bussi G, Gervasio FL, Laio A. et al. Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 2006;128:13435–41. 10.1021/ja062463w PubMed DOI
Comitani F, Gervasio FL.. Modeling Ligand–Target Binding With Enhanced Sampling Simulations, Chapter 3. Weinheim: John Wiley & Sons, Ltd, 2018, 43–66. ISBN 9783527806836. 10.1002/9783527806836.ch3 DOI
Hošek P, Spiwok V.. Metadyn view: fast web-based viewer of free energy surfaces calculated by metadynamics. Comput Phys Commun 2016;198:222–9. 10.1016/j.cpc.2015.08.037. DOI
Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng 2007;9:90–5. 10.1109/MCSE.2007.55 DOI
Invernizzi M, Parrinello M.. Rethinking metadynamics: from bias potentials to probability distributions. J Phys Chem Lett 2020;11:2731–6. 10.1021/acs.jpclett.0c00497 PubMed DOI
Klimovich PV, Shirts MR, Mobley DL.. Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 2015;29:397–411. 10.1007/s10822-015-9840-9 PubMed DOI PMC
Kříž P, Beránek J, Spiwok V.. Free energy differences from molecular simulations: exact confidence intervals from transition counts. J Chem Theory Comput 2023;19:2102–8. 10.1021/acs.jctc.2c01237 PubMed DOI PMC
Laio A, Parrinello M.. Escaping free-energy minima. Proc Natl Acad Sci USA 2002;99:12562–6. 10.1073/pnas.202427399 PubMed DOI PMC
Sullivan CB, Kaszynski A.. PyVista: 3D plotting and mesh analysis through a streamlined interface for the visualization toolkit (VTK). JOSS 2019;4:1450. 10.21105/joss.01450 DOI
The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods 2019;16:670–3. 10.1038/s41592-019-0506-8 PubMed DOI
Trapl D, Spiwok V.. Analysis of the results of metadynamics simulations by metadynminer and metadynminer3d. R J 2022;14:46–58. 10.32614/RJ-2022-057 DOI
Tribello GA, Bonomi M, Branduardi D. et al. Plumed 2: new feathers for an old bird. Comput Phys Commun 2014;185:604–13. 10.1016/j.cpc.2013.09.018. DOI
Valsson O, Parrinello M.. Variational approach to enhanced sampling and free energy calculations. Phys Rev Lett 2014;113:090601. 10.1103/PhysRevLett.113.090601 PubMed DOI
Vanderplas J. Bringing matplotlib to the browser. 2014. https://mpld3.github.io/index.html (27 August 2024, date last accessed).