Innovative technology for ammonia abatement from livestock buildings using advanced oxidation processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ. 02/01/01 / 0.0 / 0.0 / 17_049 / 0008419
European Regional Development Fund
LM2023056
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
36930449
DOI
10.1007/s43630-023-00400-w
PII: 10.1007/s43630-023-00400-w
Knihovny.cz E-zdroje
- Klíčová slova
- Advanced oxidation processes, Ammonia emissions, Hydrogen peroxide, Hydroxyl radical, Ozone,
- Publikační typ
- časopisecké články MeSH
The feasibility of using advanced oxidation processes (AOPs) for abatement of ammonia from livestock buildings was examined in a series of pilot plant experiments. In this study, all the experiments were conducted in a two-step unit containing a dry photolytic reactor (UV185/UV254/O3) and a photochemical scrubber (UV254/H2O2). The unit efficiency was tested for two initial ammonia concentrations (20 and 35 ppmv) and three different air flows (150, 300 and 450 m3·h-1). While the first step removes mainly organic pollutants that are often present together with ammonia in the air and ammonia only partially, the second step removes around 90% of ammonia emissions even at the highest flow rate of 450 m3·h-1. Absorbed ammonia in the aqueous phase can be effectively removed without adjusting the pH (i.e. without the addition of other additives) using UV and ozone. Complete removal of ammonia was achieved after 15 h of irradiation. In order to assess the price efficiency of the suggested technology and to be able to compare it with other methods the figures-of-merit were determined. The price needed for lowering ammonia emission by one order of magnitude is 0.002 € per cubic meter of treated air at the highest flow rate of 450 m3·h-1 and for initial ammonia concentrations of 20 ppmv. These findings demonstrate that AOPs are a promising method for ammonia abatement from livestock buildings which are rarely using any waste air treatment method.
Zobrazit více v PubMed
Galloway, J. N., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2), 153–226. https://doi.org/10.1007/s10533-004-0370-0 DOI
Rodhe, H., Dentener, F., & Schulz, M. (2002). The global distribution of acidifying wet deposition. Environmental Science & Technology., 36(20), 4382–4388. https://doi.org/10.1021/es020057g DOI
Dentener, F., et al. (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles. https://doi.org/10.1029/2005GB002672 DOI
Substance information: Ammonia, anhydrous. (2022). https://echa.europa.eu/cs/substance-information/-/substanceinfo/100.028.760 . Accessed 5 June 2022
(2016). Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (Text with EEA relevance ), in OJ L 344. p. p. 1–31. http://data.europa.eu/eli/dir/2016/2284/oj
(2021). EEA Report No 5/2021: European Union emission inventory report 1990–2019 under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). https://doi.org/10.2800/701303 .
(2017). Consolidated text: Commission Implementing Decision (EU) 2017/302 of 15 February 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the intensive rearing of poultry or pigs (notified under document C(2017) 688) (Text with EEA relevance). http://data.europa.eu/eli/dec_impl/2017/302/2017-02-21 .
Waldrip, H. M., Cole, N. A., & Todd, R. W. (2015). Review: nitrogen Sustainability and beef cattle feedyards: II. Ammonia emissions. The Professional Animal Scientist., 31(5), 395–411. https://doi.org/10.15232/pas.2015-01395 DOI
Insausti, M., et al. (2020). Advances in sensing ammonia from agricultural sources. Science of The Total Environment., 706, 135124. https://doi.org/10.1016/j.scitotenv.2019.135124 PubMed DOI
Guo, L., et al. (2022). Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing-a review. Atmosphere. https://doi.org/10.3390/atmos13030452 DOI
Loyon, L., et al. (2016). Best available technology for European livestock farms: Availability, effectiveness and uptake. Journal of Environmental Management., 166, 1–11. https://doi.org/10.1016/j.jenvman.2015.09.046 PubMed DOI
Aarnink, J. A., et al. (2011). Scrubber capabilities to remove airborne microorganisms and other aerial pollutants from the exhaust air of animal houses. Transactions of the ASABE, 54(5), 1921–1930. https://doi.org/10.13031/2013.39833 DOI
Melse, R. W., Ploegaert, J. P. M., & Ogink, N. W. M. (2012). Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosystems Engineering., 113(3), 242–252. https://doi.org/10.1016/j.biosystemseng.2012.08.010 DOI
Maurer, D. L., et al. (2016). Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT). Data in Brief., 7, 1413–1429. https://doi.org/10.1016/j.dib.2016.03.070 PubMed DOI PMC
Kafle, G. K., et al. (2015). Field evaluation of wood bark-based down-flow biofilters for mitigation of odor, ammonia, and hydrogen sulfide emissions from confined swine nursery barns. Journal of Environmental Management., 147, 164–174. https://doi.org/10.1016/j.jenvman.2014.09.004 PubMed DOI
Wang, Y.-C., et al. (2021). Emissions, measurement, and control of odor in livestock farms: A review. Science of The Total Environment, 776, 145735. https://doi.org/10.1016/j.scitotenv.2021.145735 PubMed DOI
Winkel, A., et al. (2015). Evaluation of a dry filter and an electrostatic precipitator for exhaust air cleaning at commercial non-cage laying hen houses. Biosystems Engineering., 129, 212–225. https://doi.org/10.1016/j.biosystemseng.2014.10.006 DOI
Ogink, N. W. M., Melse, R. W., & Mosquera, J. (2008). Multi-pollutant and one-stage scrubbers for removal of ammonia, odor, and particulate matter from animal house exhaust air. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.25508 DOI
Rockafellow, E. M., Koziel, J. A., & Jenks, W. S. (2012). Laboratory-scale investigation of UV treatment of ammonia for livestock and poultry barn exhaust applications. Journal of Environmental Quality., 41(1), 281–288. https://doi.org/10.2134/jeq2010.0536 PubMed DOI
Zhu, X., et al. (2005). Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environmental Science & Technology., 39(10), 3784–3791. https://doi.org/10.1021/es0485715 DOI
Deng, Y., & Ezyske, C. M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research., 45(18), 6189–6194. https://doi.org/10.1016/j.watres.2011.09.015 PubMed DOI
Munter, R. (2001). Advanced oxidation processes-current status and prospects. Proceedings of the Estonian Academy of Sciences. Chemistry., 50, 59–80. https://doi.org/10.3176/chem.2001.2.01 DOI
Litter, M. I. (2005). Introduction to photochemical advanced oxidation processes for water treatment. In P. Boule, D. W. Bahnemann, & P. K. J. Robertson (Eds.), Environmental photochemistry part II (pp. 325–366). Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138188 DOI
Yang, X., Tao, Y., & Murphy, J. (2021). Kinetics of the oxidation of ammonia and amines with hydroxyl radicals in the aqueous phase. Environmental Science: Processes and Impacts. https://doi.org/10.1039/d1em00317h PubMed DOI
Burkholder, J. B., et al. (2015). Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 18. Pasadena, California: Jet Propulsion Laboratory, National Aeronautics and Space Administration. https://doi.org/10.13140/RG.2.1.2504.2806 DOI
Atkinson, R., et al. (1997). Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data., 29, 167–266. https://doi.org/10.1063/1.556010 DOI
DeMore, W., et al. (1997). Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12 (Vol. 90, p. 23). JPL Publication.
Atkinson, R., et al. (2004). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O DOI
Manap, H., et al. (2009) Ammonia Detection in the UV Region Using an Optical Fiber Sensor. pp. 140–145. https://doi.org/10.1109/ICSENS.2009.5398215
McDonald, C. C., Kahn, A., & Gunning, H. E. (1954). The photolysis of ammonia at 1849A in a flow system. The Journal of Chemical Physics., 22(5), 908–916. https://doi.org/10.1063/1.1740214 DOI
Prostějovský, T., et al. (2021). Advanced oxidation processes for elimination of xylene from waste gases. Journal of Photochemistry and Photobiology A: Chemistry., 407, 113047. https://doi.org/10.1016/j.jphotochem.2020.113047 DOI
Prostějovský, T., et al. (2022). Photochemical treatment (UV/O DOI
Kočí, K., et al. (2019). Degradation of Styrene from Waste Gas Stream by Advanced Oxidation Processes. Clean-Soil Air Water. https://doi.org/10.1002/clen.201900126 DOI
Tsang, W., & Herron, J. T. (1991). Chemical kinetic data base for propellant combustion I. Reactions involving NO, NO DOI
Keller-Rudek, H., et al. (2013). The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth System Science Data., 5(2), 365–373. https://doi.org/10.5194/essd-5-365-2013 DOI
Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC handbook of chemistry and physics (97th ed., p. 2670). CRC Press. DOI
Huang, L., et al. (2008). Removal of ammonia by OH radical in aqueous phase. Environmental Science & Technology., 42(21), 8070–8075. https://doi.org/10.1021/es8008216 DOI
Hoigne, J., & Bader, H. (1978). Ozonation of water: Kinetics of oxidation of ammonia by ozone and hydroxyl radicals. Environmental Science & Technology., 12(1), 79–84. https://doi.org/10.1021/es60137a005 DOI
Marusawa, H., et al. (2002). Hydroxyl radical as a strong electrophilic species. Bioorganic & Medicinal Chemistry., 10(7), 2283–2290. https://doi.org/10.1016/S0968-0896(02)00048-2 DOI
Zhang, X., et al. (2015). UV/chlorine process for ammonia removal and disinfection by-product reduction: Comparison with chlorination. Water Research., 68, 804–811. https://doi.org/10.1016/j.watres.2014.10.044 PubMed DOI