Innovative technology for ammonia abatement from livestock buildings using advanced oxidation processes

. 2023 Jul ; 22 (7) : 1603-1610. [epub] 20230317

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36930449

Grantová podpora
CZ. 02/01/01 / 0.0 / 0.0 / 17_049 / 0008419 European Regional Development Fund
LM2023056 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 36930449
DOI 10.1007/s43630-023-00400-w
PII: 10.1007/s43630-023-00400-w
Knihovny.cz E-zdroje

The feasibility of using advanced oxidation processes (AOPs) for abatement of ammonia from livestock buildings was examined in a series of pilot plant experiments. In this study, all the experiments were conducted in a two-step unit containing a dry photolytic reactor (UV185/UV254/O3) and a photochemical scrubber (UV254/H2O2). The unit efficiency was tested for two initial ammonia concentrations (20 and 35 ppmv) and three different air flows (150, 300 and 450 m3·h-1). While the first step removes mainly organic pollutants that are often present together with ammonia in the air and ammonia only partially, the second step removes around 90% of ammonia emissions even at the highest flow rate of 450 m3·h-1. Absorbed ammonia in the aqueous phase can be effectively removed without adjusting the pH (i.e. without the addition of other additives) using UV and ozone. Complete removal of ammonia was achieved after 15 h of irradiation. In order to assess the price efficiency of the suggested technology and to be able to compare it with other methods the figures-of-merit were determined. The price needed for lowering ammonia emission by one order of magnitude is 0.002 € per cubic meter of treated air at the highest flow rate of 450 m3·h-1 and for initial ammonia concentrations of 20 ppmv. These findings demonstrate that AOPs are a promising method for ammonia abatement from livestock buildings which are rarely using any waste air treatment method.

Zobrazit více v PubMed

Galloway, J. N., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2), 153–226. https://doi.org/10.1007/s10533-004-0370-0 DOI

Rodhe, H., Dentener, F., & Schulz, M. (2002). The global distribution of acidifying wet deposition. Environmental Science & Technology., 36(20), 4382–4388. https://doi.org/10.1021/es020057g DOI

Dentener, F., et al. (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles. https://doi.org/10.1029/2005GB002672 DOI

Substance information: Ammonia, anhydrous. (2022). https://echa.europa.eu/cs/substance-information/-/substanceinfo/100.028.760 . Accessed 5 June 2022

(2016). Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (Text with EEA relevance ), in OJ L 344. p. p. 1–31. http://data.europa.eu/eli/dir/2016/2284/oj

(2021). EEA Report No 5/2021: European Union emission inventory report 1990–2019 under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). https://doi.org/10.2800/701303 .

(2017). Consolidated text: Commission Implementing Decision (EU) 2017/302 of 15 February 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the intensive rearing of poultry or pigs (notified under document C(2017) 688) (Text with EEA relevance). http://data.europa.eu/eli/dec_impl/2017/302/2017-02-21 .

Waldrip, H. M., Cole, N. A., & Todd, R. W. (2015). Review: nitrogen Sustainability and beef cattle feedyards: II. Ammonia emissions. The Professional Animal Scientist., 31(5), 395–411. https://doi.org/10.15232/pas.2015-01395 DOI

Insausti, M., et al. (2020). Advances in sensing ammonia from agricultural sources. Science of The Total Environment., 706, 135124. https://doi.org/10.1016/j.scitotenv.2019.135124 PubMed DOI

Guo, L., et al. (2022). Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing-a review. Atmosphere. https://doi.org/10.3390/atmos13030452 DOI

Loyon, L., et al. (2016). Best available technology for European livestock farms: Availability, effectiveness and uptake. Journal of Environmental Management., 166, 1–11. https://doi.org/10.1016/j.jenvman.2015.09.046 PubMed DOI

Aarnink, J. A., et al. (2011). Scrubber capabilities to remove airborne microorganisms and other aerial pollutants from the exhaust air of animal houses. Transactions of the ASABE, 54(5), 1921–1930. https://doi.org/10.13031/2013.39833 DOI

Melse, R. W., Ploegaert, J. P. M., & Ogink, N. W. M. (2012). Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosystems Engineering., 113(3), 242–252. https://doi.org/10.1016/j.biosystemseng.2012.08.010 DOI

Maurer, D. L., et al. (2016). Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT). Data in Brief., 7, 1413–1429. https://doi.org/10.1016/j.dib.2016.03.070 PubMed DOI PMC

Kafle, G. K., et al. (2015). Field evaluation of wood bark-based down-flow biofilters for mitigation of odor, ammonia, and hydrogen sulfide emissions from confined swine nursery barns. Journal of Environmental Management., 147, 164–174. https://doi.org/10.1016/j.jenvman.2014.09.004 PubMed DOI

Wang, Y.-C., et al. (2021). Emissions, measurement, and control of odor in livestock farms: A review. Science of The Total Environment, 776, 145735. https://doi.org/10.1016/j.scitotenv.2021.145735 PubMed DOI

Winkel, A., et al. (2015). Evaluation of a dry filter and an electrostatic precipitator for exhaust air cleaning at commercial non-cage laying hen houses. Biosystems Engineering., 129, 212–225. https://doi.org/10.1016/j.biosystemseng.2014.10.006 DOI

Ogink, N. W. M., Melse, R. W., & Mosquera, J. (2008). Multi-pollutant and one-stage scrubbers for removal of ammonia, odor, and particulate matter from animal house exhaust air. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.25508 DOI

Rockafellow, E. M., Koziel, J. A., & Jenks, W. S. (2012). Laboratory-scale investigation of UV treatment of ammonia for livestock and poultry barn exhaust applications. Journal of Environmental Quality., 41(1), 281–288. https://doi.org/10.2134/jeq2010.0536 PubMed DOI

Zhu, X., et al. (2005). Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environmental Science & Technology., 39(10), 3784–3791. https://doi.org/10.1021/es0485715 DOI

Deng, Y., & Ezyske, C. M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research., 45(18), 6189–6194. https://doi.org/10.1016/j.watres.2011.09.015 PubMed DOI

Munter, R. (2001). Advanced oxidation processes-current status and prospects. Proceedings of the Estonian Academy of Sciences. Chemistry., 50, 59–80. https://doi.org/10.3176/chem.2001.2.01 DOI

Litter, M. I. (2005). Introduction to photochemical advanced oxidation processes for water treatment. In P. Boule, D. W. Bahnemann, & P. K. J. Robertson (Eds.), Environmental photochemistry part II (pp. 325–366). Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138188 DOI

Yang, X., Tao, Y., & Murphy, J. (2021). Kinetics of the oxidation of ammonia and amines with hydroxyl radicals in the aqueous phase. Environmental Science: Processes and Impacts. https://doi.org/10.1039/d1em00317h PubMed DOI

Burkholder, J. B., et al. (2015). Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 18. Pasadena, California: Jet Propulsion Laboratory, National Aeronautics and Space Administration. https://doi.org/10.13140/RG.2.1.2504.2806 DOI

Atkinson, R., et al. (1997). Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data., 29, 167–266. https://doi.org/10.1063/1.556010 DOI

DeMore, W., et al. (1997). Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12 (Vol. 90, p. 23). JPL Publication.

Atkinson, R., et al. (2004). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O DOI

Manap, H., et al. (2009) Ammonia Detection in the UV Region Using an Optical Fiber Sensor. pp. 140–145. https://doi.org/10.1109/ICSENS.2009.5398215

McDonald, C. C., Kahn, A., & Gunning, H. E. (1954). The photolysis of ammonia at 1849A in a flow system. The Journal of Chemical Physics., 22(5), 908–916. https://doi.org/10.1063/1.1740214 DOI

Prostějovský, T., et al. (2021). Advanced oxidation processes for elimination of xylene from waste gases. Journal of Photochemistry and Photobiology A: Chemistry., 407, 113047. https://doi.org/10.1016/j.jphotochem.2020.113047 DOI

Prostějovský, T., et al. (2022). Photochemical treatment (UV/O DOI

Kočí, K., et al. (2019). Degradation of Styrene from Waste Gas Stream by Advanced Oxidation Processes. Clean-Soil Air Water. https://doi.org/10.1002/clen.201900126 DOI

Tsang, W., & Herron, J. T. (1991). Chemical kinetic data base for propellant combustion I. Reactions involving NO, NO DOI

Keller-Rudek, H., et al. (2013). The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth System Science Data., 5(2), 365–373. https://doi.org/10.5194/essd-5-365-2013 DOI

Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC handbook of chemistry and physics (97th ed., p. 2670). CRC Press. DOI

Huang, L., et al. (2008). Removal of ammonia by OH radical in aqueous phase. Environmental Science & Technology., 42(21), 8070–8075. https://doi.org/10.1021/es8008216 DOI

Hoigne, J., & Bader, H. (1978). Ozonation of water: Kinetics of oxidation of ammonia by ozone and hydroxyl radicals. Environmental Science & Technology., 12(1), 79–84. https://doi.org/10.1021/es60137a005 DOI

Marusawa, H., et al. (2002). Hydroxyl radical as a strong electrophilic species. Bioorganic & Medicinal Chemistry., 10(7), 2283–2290. https://doi.org/10.1016/S0968-0896(02)00048-2 DOI

Zhang, X., et al. (2015). UV/chlorine process for ammonia removal and disinfection by-product reduction: Comparison with chlorination. Water Research., 68, 804–811. https://doi.org/10.1016/j.watres.2014.10.044 PubMed DOI

Wang, J., et al. (2017). Effects of pH and H PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...