Spatial variation in red deer density in a transboundary forest ecosystem
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36941335
PubMed Central
PMC10027870
DOI
10.1038/s41598-023-31283-7
PII: 10.1038/s41598-023-31283-7
Knihovny.cz E-zdroje
- MeSH
- divoká zvířata MeSH
- ekosystém * MeSH
- lesy MeSH
- vysoká zvěř * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Forests in Europe are exposed to increasingly frequent and severe disturbances. The resulting changes in the structure and composition of forests can have profound consequences for the wildlife inhabiting them. Moreover, wildlife populations in Europe are often subjected to differential management regimes as they regularly extend across multiple national and administrative borders. The red deer Cervus elaphus population in the Bohemian Forest Ecosystem, straddling the Czech-German border, has experienced forest disturbances, primarily caused by windfalls and bark beetle Ips typographus outbreaks during the past decades. To adapt local management strategies to the changing environmental conditions and to coordinate them across the international border, reliable estimates of red deer density and abundance are highly sought-after by policymakers, wildlife managers, and stakeholders. Covering a 1081-km2 study area, we conducted a transnational non-invasive DNA sampling study in 2018 that yielded 1578 genotyped DNA samples from 1120 individual red deer. Using spatial capture-recapture models, we estimated total and jurisdiction-specific abundance of red deer throughout the ecosystem and quantified the role of forest disturbance and differential management strategies in shaping spatial heterogeneity in red deer density. We hypothesised that (a) forest disturbances provide favourable habitat conditions (e.g., forage and cover), and (b) contrasting red deer management regimes in different jurisdictions create a differential risk landscape, ultimately shaping density distributions. Overall, we estimated that 2851 red deer (95% Credible Interval = 2609-3119) resided in the study area during the sampling period, with a relatively even overall sex ratio (1406 females, 95% CI = 1229-1612 and 1445 males, 95% CI = 1288-1626). The average red deer density was higher in Czechia (3.5 km-2, 95% CI = 1.2-12.3) compared to Germany (2 km-2, 95% CI = 0.2-11). The effect of forest disturbances on red deer density was context-dependent. Forest disturbances had a positive effect on red deer density at higher elevations and a negative effect at lower elevations, which could be explained by partial migration and its drivers in this population. Density of red deer was generally higher in management units where hunting is prohibited. In addition, we found that sex ratios differed between administrative units and were more balanced in the non-intervention zones. Our results show that the effect of forest disturbances on wild ungulates is modulated by additional factors, such as elevation and ungulate management practices. Overall density patterns and sex ratios suggested strong gradients in density between administrative units. With climate change increasing the severity and frequency of forest disturbances, population-level monitoring and management are becoming increasingly important, especially for wide-ranging species as both wildlife and global change transcend administrative boundaries.
Bavarian Forest National Park Freyunger Str 2 94481 Grafenau Germany
Chair of Wildlife Ecology and Wildlife Management University of Freiburg 79106 Freiburg Germany
Department of Ecosystem and Conservation Sciences University of Montana Missoula USA
Department Wildlife Genetics Seq IT GmbH and Co KG Pfaffplatz 10 67655 Kaiserslautern Germany
Geography Department Humboldt Universität Zu Berlin Unter Den Linden 6 10099 Berlin Germany
Šumava National Park Sušická 399 341 92 Kašperské Hory Czech Republic
Zobrazit více v PubMed
Liu J, Yong DL, Choi C-Y, Gibson L. Transboundary frontiers: An emerging priority for biodiversity conservation. Trends Ecol. Evol. 2020;35:679–690. doi: 10.1016/j.tree.2020.03.004. PubMed DOI
Mason N, Ward M, Watson JE, Venter O, Runting RK. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 2020;4:694–701. doi: 10.1038/s41559-020-1160-3. PubMed DOI
Bischof R, et al. Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. Proc. Natl. Acad. Sci. USA. 2020;117:30531–30538. doi: 10.1073/pnas.2011383117. PubMed DOI PMC
Bischof R, Brøseth H, Gimenez O. Wildlife in a politically divided world: Insularism inflates estimates of brown bear abundance. Conserv. Lett. 2016;9:122–130. doi: 10.1111/conl.12183. DOI
Linnell JD, et al. Border security fencing and wildlife: The end of the transboundary paradigm in Eurasia? PLoS Biol. 2016;14:e1002483. doi: 10.1371/journal.pbio.1002483. PubMed DOI PMC
Senf C, Seidl R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021;4:63–70. doi: 10.1038/s41893-020-00609-y. DOI
Seidl R, et al. Small beetle, large-scale drivers: How regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 2016;53:530–540. doi: 10.1111/1365-2664.12540. PubMed DOI PMC
Seidl R, Rammer W, Jäger D, Lexer MJ. Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For. Ecol. Manag. 2008;256:209–220. doi: 10.1016/j.foreco.2008.04.002. DOI
Seidl R, et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011;222:903–924. doi: 10.1016/j.ecolmodel.2010.09.040. DOI
Kausrud K, et al. Population dynamics in changing environments: The case of an eruptive forest pest species. Biol. Rev. 2012;87:34–51. doi: 10.1111/j.1469-185X.2011.00183.x. PubMed DOI
Seidl R, et al. Forest disturbances under climate change. Nat. Clim. Change. 2017;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC
Marini L, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 2017;40:1426–1435. doi: 10.1111/ecog.02769. DOI
Pickett S, White P, editors. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press; 1985. pp. 385–455.
Kuijper DP, et al. Do ungulates preferentially feed in forest gaps in European temperate forest? For. Ecol. Manag. 2009;258:1528–1535. doi: 10.1016/j.foreco.2009.07.010. DOI
Ivan JS, Seglund AE, Truex RL, Newkirk ES. Mammalian responses to changed forest conditions resulting from bark beetle outbreaks in the southern Rocky Mountains. Ecosphere. 2018;9:e02369. doi: 10.1002/ecs2.2369. DOI
Lehnert LW, Bässler C, Brandl R, Burton PJ, Müller J. Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages. J. for Nat. Conserv. 2013;21:97–104. doi: 10.1016/j.jnc.2012.11.003. DOI
Przepióra F, Loch J, Ciach M. Bark beetle infestation spots as biodiversity hotspots: Canopy gaps resulting from insect outbreaks enhance the species richness, diversity and abundance of birds breeding in coniferous forests. For. Ecol. Manag. 2020;473:118280. doi: 10.1016/j.foreco.2020.118280. DOI
Hayes TA, DeCesare NJ, Peterson CJ, Bishop CJ, Mitchell MS. Trade-offs in forest disturbance management for plant communities and ungulates. For. Ecol. Manag. 2022;506:119972. doi: 10.1016/j.foreco.2021.119972. DOI
Boulanger V, et al. Ungulates increase forest plant species richness to the benefit of non-forest specialists. Glob. Chang. Biol. 2018;24:e485–e495. doi: 10.1111/gcb.13899. PubMed DOI
Ruckstuhl K, Neuhaus P. Sexual Segregation in Vertebrates. Cambridge University Press; 2006.
Main MB, Weckerly FW, Bleich VC. Sexual segregation in ungulates: New directions for research. J. Mammal. 1996;77:449–461. doi: 10.2307/1382821. DOI
Bonenfant C, et al. Multiple causes of sexual segregation in European red deer: Enlightenments from varying breeding phenology at high and low latitude. Proc. R. Soc. Lond. Ser. B. 2004;271:883–892. doi: 10.1098/rspb.2003.2661. PubMed DOI PMC
Bischof R, et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 2012;180:407–424. doi: 10.1086/667590. PubMed DOI
Coppes J, Burghardt F, Hagen R, Suchant R, Braunisch V. Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus) PLoS ONE. 2017;12:e0175134. doi: 10.1371/journal.pone.0175134. PubMed DOI PMC
Meisingset EL, et al. Spatial mismatch between management units and movement ecology of a partially migratory ungulate. J. Appl. Ecol. 2018;55:745–753. doi: 10.1111/1365-2664.13003. DOI
Zeppenfeld T, et al. Response of mountain Picea abies forests to stand-replacing bark beetle outbreaks: Neighbourhood effects lead to self-replacement. J. Appl. Ecol. 2015;52:1402–1411. doi: 10.1111/1365-2664.12504. DOI
Rivrud IM, Heurich M, Krupczynski P, Müller J, Mysterud A. Green wave tracking by large herbivores: An experimental approach. Ecology. 2016;97:3547–3553. doi: 10.1002/ecy.1596. PubMed DOI
Möst L, Hothorn T, Müller J, Heurich M. Creating a landscape of management: Unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manag. 2015;338:46–56. doi: 10.1016/j.foreco.2014.11.015. DOI
Rivrud IM, et al. Leave before it’s too late: Anthropogenic and environmental triggers of autumn migration in a hunted ungulate population. Ecology. 2016;97:1058–1068. PubMed
Heurich M, et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem? PLoS ONE. 2015;10:e0120960. doi: 10.1371/journal.pone.0120960. PubMed DOI PMC
Pflugmacher D, Rabe A, Peters M, Hostert P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote. Sens. Environ. 2019;221:583–595. doi: 10.1016/j.rse.2018.12.001. DOI
Lausch A, Fahse L, Heurich M. Factors affecting the spatio-temporal dispersion of Ips typographus (L) in Bavarian forest national park: A long-term quantitative landscape-level analysis. For. Ecol. Manag. 2011;261:233–245. doi: 10.1016/j.foreco.2010.10.012. DOI
Krojerová-Prokešová J, Barančeková M, Šustr P, Heurich M. Feeding patterns of red deer Cervus elaphus along an altitudinal gradient in the Bohemian Forest: effect of habitat and season. Wildl. Biol. 2010;16:173–184. doi: 10.2981/09-004. DOI
Cailleret M, Heurich M, Bugmann H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 2014;328:179–192. doi: 10.1016/j.foreco.2014.05.030. DOI
Janík T, et al. The declining occurrence of moose (Alces alces) at the southernmost edge of its range raise conservation concerns. Ecol. Evol. 2021;11:5468–5483. doi: 10.1002/ece3.7441. PubMed DOI PMC
Saggiomo L, Esattore B, Bartoš L, et al. Evaluating the management success of an alien species through its hunting bags: The case of the sika deer (Cervus nippon) in the Czech Republic. Acta Univ. Agric. Silvic. Mendelianae Brunensis. 2021;69:30.
Bartos L, Hyanek J, Zirovnicky J. Hybridization between red and sika deer. Zool. Anzeiger Jena. 1981;207:271–287.
Krojerová-Prokešová J, et al. Genetic differentiation between introduced central European sika and source populations in Japan: Effects of isolation and demographic events. Biol. Invasions. 2017;19:2125–2141. doi: 10.1007/s10530-017-1424-2. DOI
Peters W, et al. Large herbivore migration plasticity along environmental gradients in Europe: Life-history traits modulate forage effects. Oikos. 2019;128:416–429. doi: 10.1111/oik.05588. DOI
Belotti E, et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in central Europe. PLoS ONE. 2015;10:e0138139. doi: 10.1371/journal.pone.0138139. PubMed DOI PMC
Ebert C, Sandrini J, Welter B, Thiele B, Hohmann U. Estimating red deer (Cervus elaphus) population size based on non-invasive genetic sampling. Eur. J. Wildl. Res. 2021;67:27. doi: 10.1007/s10344-021-01456-8. DOI
Gurgul A, Radko A, Słota E. Characteristics of X-and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus) Mol. Biol. Rep. 2010;37:2915–2918. doi: 10.1007/s11033-009-9852-4. PubMed DOI
Wilberg MJ, Dreher BP. GENECAP: A program for analysis of multilocus genotype data for non-invasive sampling and capture-recapture population estimation. Mol. Ecol. Notes. 2004;4:783–785. doi: 10.1111/j.1471-8286.2004.00797.x. DOI
Ruell EW, Riley SP, Douglas MR, Pollinger JP, Crooks KR. Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. J. Mammal. 2009;90:129–135. doi: 10.1644/07-MAMM-A-249.1. DOI
Paetkau D. An empirical exploration of data quality in DNA-based population inventories. Mol. Ecol. 2003;12:1375–1387. doi: 10.1046/j.1365-294X.2003.01820.x. PubMed DOI
Waits LP, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 2001;10:249–256. doi: 10.1046/j.1365-294X.2001.01185.x. PubMed DOI
Valière N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes. 2002;2:377–379.
Broquet T, Petit E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 2004;13:3601–3608. doi: 10.1111/j.1365-294X.2004.02352.x. PubMed DOI
Royle JA, Nichols JD, Karanth KU, Gopalaswamy AM. A hierarchical model for estimating density in camera-trap studies. J. Appl. Ecol. 2009;46:118–127. doi: 10.1111/j.1365-2664.2008.01578.x. DOI
Efford MG. Estimation of population density by spatially explicit capture–recapture analysis of data from area searches. Ecology. 2011;92:2202–2207. doi: 10.1890/11-0332.1. PubMed DOI
Efford M. Density estimation in live-trapping studies. Oikos. 2004;106:598–610. doi: 10.1111/j.0030-1299.2004.13043.x. DOI
Illian J, Penttinen A, Stoyan H, Stoyan D. Statistical Analysis and Modelling of Spatial Point Patterns. Wiley; 2008.
Zhang W, et al. A flexible and efficient Bayesian implementation of point process models for spatial capture–recapture data. Ecology. 2023;104:e3887. doi: 10.1002/ecy.3887. PubMed DOI PMC
Oeser J, Pflugmacher D, Senf C, Heurich M, Hostert P. Using intra-annual Landsat time series for attributing forest disturbance agents in central Europe. Forests. 2017;8:251. doi: 10.3390/f8070251. DOI
Royle JA, Dorazio RM, Link WA. Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Stat. 2007;16:67–85. doi: 10.1198/106186007X181425. DOI
Milleret C, et al. Using partial aggregation in spatial capture recapture. Methods Ecol. Evol. 2018;9:1896–1907. doi: 10.1111/2041-210X.13030. DOI
Royle JA, Chandler RB, Sollmann R, Gardner B. Spatial Capture-Recapture. Academic Press; 2014.
de Valpine P, et al. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 2017;26:403–413. doi: 10.1080/10618600.2016.1172487. DOI
R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.
Bischof, R. et al. nimbleSCR: Spatial Capture-Recapture (SCR) Methods Using ‘Nimble’. R Package Version 0.1.0 (2020).
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998;7:434–455.
Brinkman TJ, Person DK, Chapin FS, III, Smith W, Hundertmark KJ. Estimating abundance of sitka black-tailed deer using DNA from fecal pellets. J. Wildl. Manag. 2011;75:232–242. doi: 10.1002/jwmg.22. DOI
Goode MJ, et al. Capture–recapture of white-tailed deer using DNA from fecal pellet groups. Wildl. Biol. 2014;20:270–278. doi: 10.2981/wlb.00050. DOI
Brazeal JL, Weist T, Sacks BN. Noninvasive genetic spatial capture-recapture for estimating deer population abundance. J. Wildl. Manag. 2017;81:629–640. doi: 10.1002/jwmg.21236. DOI
Dupke C, et al. Habitat selection by a large herbivore at multiple spatial and temporal scales is primarily governed by food resources. Ecography. 2017;40:1014–1027. doi: 10.1111/ecog.02152. DOI
Rettie WJ, Messier F. Hierarchical habitat selection by woodland caribou: Its relationship to limiting factors. Ecography. 2000;23:466–478. doi: 10.1111/j.1600-0587.2000.tb00303.x. DOI
Smolko P, Veselovská A, Kropil R. Seasonal dynamics of forage for red deer in temperate forests: Importance of the habitat properties, stand development stage and overstorey dynamics. Wildl. Biol. 2018;2018:1–10. doi: 10.2981/wlb.00366. DOI
Stone WE, Wolfe ML. Response of understory vegetation to variable tree mortality following a mountain pine beetle epidemic in lodgepole pine stands in northern Utah. Vegetatio. 1996;122:1–12. doi: 10.1007/BF00052811. DOI
Pec GJ, et al. Rapid increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests. PLoS ONE. 2015;10:e0124691. doi: 10.1371/journal.pone.0124691. PubMed DOI PMC
Senf C, Müller J, Seidl R. Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc. Ecol. 2019;34:2837–2850. doi: 10.1007/s10980-019-00921-9. DOI
Lone K, Loe LE, Meisingset EL, Stamnes I, Mysterud A. An adaptive behavioural response to hunting: Surviving male red deer shift habitat at the onset of the hunting season. Anim. Behav. 2015;102:127–138. doi: 10.1016/j.anbehav.2015.01.012. DOI
Oeser J, Heurich M, Senf C, Pflugmacher D, Kuemmerle T. Satellite-based habitat monitoring reveals long-term dynamics of deer habitat in response to forest disturbances. Ecol. Appl. 2021;31:e2269. doi: 10.1002/eap.2269. PubMed DOI
Ewald J, et al. Estimating the distribution of forage mass for ungulates from vegetation plots in Bavarian Forest National Park. Tuexenia. 2014;34:53–70.
McNaughton S. Ecology of a grazing ecosystem: The Serengeti. Ecol. Monogr. 1985;55:259–294. doi: 10.2307/1942578. DOI
Fryxell JM. Forage quality and aggregation by large herbivores. Am. Nat. 1991;138:478–498. doi: 10.1086/285227. DOI
Frid A, Dill L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 2002;6:060111.
Ciuti S, et al. Human selection of elk behavioural traits in a landscape of fear. Proc. R. Soc. B. 2012;279:4407–4416. doi: 10.1098/rspb.2012.1483. PubMed DOI PMC
Forsyth DM, et al. Methodology matters when estimating deer abundance: A global systematic review and recommendations for improvements. The J. Wildl. Manag. 2022;86:e22207. doi: 10.1002/jwmg.22207. DOI
Stephens PA, Pettorelli N, Barlow J, Whittingham MJ, Cadotte MW. Management by proxy? The use of indices in applied ecology. J. Appl. Ecol. 2015;52:1–6. doi: 10.1111/1365-2664.12383. DOI
Henrich M, et al. Deer behavior affects density estimates with camera traps, but is outwighted by spatial variability. Front. Ecol. Evol. 2022;10:881502. doi: 10.3389/fevo.2022.881502. DOI
Gervasi V, Linnell JD, Brøseth H, Gimenez O. Failure to coordinate management in transboundary populations hinders the achievement of national management goals: The case of wolverines in Scandinavia. J. Appl. Ecol. 2019;56:1905–1915.
Moqanaki EM, Jiménez J, Bensch S, López-Bao JV. Counting bears in the Iranian Caucasus: Remarkable mismatch between scientifically-sound population estimates and perceptions. Biol. Conserv. 2018;220:182–191. doi: 10.1016/j.biocon.2018.02.016. DOI
Gopalaswamy AM, et al. How “science” can facilitate the politicization of charismatic megafauna counts. Proc. Natl. Acad. Sci. USA. 2022;119:e2203244119. doi: 10.1073/pnas.2203244119. PubMed DOI PMC
Tourani M. A review of spatial capture–recapture: Ecological insights, limitations, and prospects. Ecol. Evol. 2022;12:e8468. doi: 10.1002/ece3.8468. PubMed DOI PMC