Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DEC-02/2021/IDUB/II.1/AMERICIUM
Gdansk University of Technology
20-11140S
Americium - "Excellence Initiative - Research University"
Czech Science Foundation
2021/43/I/ST7/03205
National Science Centre, Poland
PubMed
36949366
DOI
10.1002/smll.202208265
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, core-level spectroscopies, density functional theory (DFT) calculations, deuterium-based plasma, polycrystalline diamonds,
- Publikační typ
- časopisecké články MeSH
Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of CC dimers, CH, CO groups, and COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.
Zobrazit více v PubMed
N. Yang, G. M. Swain, X. Jiang, Electroanalysis 2016, 28, 27.
D. Liang, W. Yan-Hui, Z. Jian-Bing, J. Inorg. Mater. 2017, 32, 673.
Y. V. Pleskov, M. D. Krotova, V. V. Elkin, E. A. Ekimov, Electrochim. Acta 2016, 201, 268.
S. Garcia-Segura, E. Vieira dos Santos, C. A. Martínez-Huitle, Electrochem. Commun. 2015, 59, 52.
N. R. Wilson, S. L. Clewes, M. E. Newton, P. R. Unwin, J. V. Macpherson, J. Phys. Chem. B 2006, 110, 5639.
W. Gajewski, P. Achatz, O. A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, J. A. Garrido, Phys. Rev. B 2009, 79, 045206.
J.-P. Lagrange, A. Deneuville, E. Gheeraert, Diamond Relat. Mater. 1998, 7, 1390.
A. Fujishima, Y. Einaga, T. N. Rao, D. A. Tryk, Diamond Electrochemistry, Elsevier, Cham, Switzerland 2005.
X. Z. Liao, R. J. Zhang, C. S. Lee, S. T. Lee, Y. W. Lam, Diamond Relat. Mater. 1997, 6, 521.
H. Long, H. Luo, J. Luo, Y. Xie, Z. Deng, X. Zhang, Y. Wang, Q. P. Wei, Z. M. Yu, Mater. Lett. 2015, 157, 34.
K. Asai, T. A. Ivandini, M. M. Falah, Y. Einaga, Electroanalysis 2016, 28, 177.
M. N. Latto, G. Pastor-Moreno, D. J. Riley, Electroanalysis 2004, 16, 434.
T. A. Ivandini, T. Watanabe, T. Matsui, Y. Ootani, S. Iizuka, R. Toyoshima, H. Kodama, H. Kondoh, Y. Tateyama, Y. Einaga, J. Phys. Chem. C 2019, 123, 5336.
J.-M. Cho, Y.-J. Ko, H.-J. Lee, H.-J. Choi, Y.-J. Baik, J.-K. Park, J. Y. Kwak, J. Kim, J. Park, Y. Jeong, I. Kim, K.-S. Lee, W.-S. Lee, Small 2022, 18, 2105087.
R. Guo, J. Wang, Z. Bi, X. Chen, X. Hu, W. Pan, Small n/a, 2206314.
S. Handschuh-Wang, T. Wang, Y. Tang, Small 2021, 17, 2007529.
S. Yu, S. Liu, X. Jiang, N. Yang, Carbon 2022, 200, 517.
T. Kondo, Curr. Opin. Electrochem. 2022, 32, 100891.
Y. V. Pleskov, Y. E. Evstefeeva, M. D. Krotova, V. P. Varnin, I. G. Teremetskaya, J. Electroanal. Chem. 2006, 595, 168.
O. A. Williams, R. B. Jackman, Semicond. Sci. Technol. 2003, 18, S34.
R. B. Jackman, H. J. Looi, L. Y. S. Pang, M. D. Whitfield, J. S. Foord, Carbon 1999, 37, 817.
J. V. Macpherson, Phys. Chem. Chem. Phys. 2015, 17, 2935.
J. Cai, T. Niu, P. Shi, G. Zhao, Small 2019, 15, 1900153.
D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nature Mater 2013, 12, 836.
R. J. Hamers, J. A. Bandy, D. Zhu, L. Zhang, Faraday Discuss. 2014, 172, 397.
F. Buchner, T. Kirschbaum, A. Venerosy, H. Girard, J.-C. Arnault, B. Kiendl, A. Krueger, K. Larsson, A. Bande, T. Petit, C. Merschjann, Nanoscale 2022, 14, 17188.
O. Ternyak, S. Michaelson, L. Tkach, R. Akhvlediani, A. Hoffman, phys. stat. sol. (a) 2007, 204, 2839.
N. Mizuochi, J. Isoya, J. Niitsuma, T. Sekiguchi, H. Watanabe, H. Kato, T. Makino, H. Okushi, S. Yamasaki, J. Appl. Phys. 2007, 101, 103501.
Z. Teukam, J. Chevallier, C. Saguy, R. Kalish, D. Ballutaud, M. Barbé, F. Jomard, A. Tromson-Carli, C. Cytermann, J. E. Butler, M. Bernard, C. Baron, A. Deneuville, Nature Mater 2003, 2, 482.
J. Chevallier, Z. Teukam, C. Saguy, R. Kalish, C. Cytermann, F. Jomard, M. Barbé, T. Kociniewski, J. E. Butler, C. Baron, A. Deneuville, Phys. Status Solidi A 2004, 201, 2444.
J. S. Mugridge, R. G. Bergman, K. N. Raymond, Angew. Chem. 2010, 122, 3717.
R. Bogdanowicz, M. Sobaszek, M. Sawczak, G. M. Grigorian, M. Ficek, P. Caban, A. Herman, A. Cenian, Diamond Relat. Mater. 2019, 96, 198.
R. Bogdanowicz, Curr Opin Solid State Mater Sci 2022, 26, 100991.
B. Kiendl, A. Day, S. Choudhury, F. Buchner, K. Atak, A. Chemin, C. Merschjann, E. Hadzifejzovic, T. Claridge, K. Larsson, A. Venerosy, M. Lounasvuori, N. Zabarska, B. Iliev, T. Schubert, H. Girard, J.-C. Arnault, T. Petit, J. Foord, A. Krueger, (Preprint) 10.26434/chemrxiv-2022-jm92g, v1, submitted: December 2022.
X. H. Wang, G.-H. M. Ma, W. Zhu, J. T. Glass, L. Bergman, K. F. Turner, R. J. Nemanich, Diamond Relat. Mater. 1992, 1, 828.
T. Zhang, L. Wang, F. Sun, B. Shen, Z. Zhang, Diamond Relat. Mater. 2013, 40, 82.
N. G. Ferreira, E. Abramof, E. J. Corat, V. J. Trava-Airoldi, Carbon 2003, 41, 1301.
A. Dettlaff, M. Sobaszek, T. Klimczuk, R. Bogdanowicz, Carbon 2021, 174, 594.
V. Mortet, I. Gregora, A. Taylor, N. Lambert, P. Ashcheulov, Z. Gedeonova, P. Hubik, Carbon 2020, 168, 319.
M. Bernard, A. Deneuville, P. Muret, Diamond Relat. Mater. 2004, 13, 282.
M. Werner, O. Dorsch, H. U. Baerwind, E. Obermeier, L. Haase, W. Seifert, A. Ringhandt, C. Johnston, S. Romani, H. Bishop, P. R. Chalker, Appl. Phys. Lett. 1994, 64, 595.
N. Dubrovinskaia, L. Dubrovinsky, T. Papageorgiou, A. Bosak, M. Krisch, H. F. Braun, J. Wosnitza, Appl. Phys. Lett. 2008, 92, 132506.
P. Szirmai, T. Pichler, O. A. Williams, S. Mandal, C. Bäuerle, F. Simon, Phys. Status Solidi B 2012, 249, 2656.
P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith, K. N. Rosser, Diamond Relat. Mater. 2008, 17, 105.
M. Bernard, C. Baron, A. Deneuville, Diamond Relat. Mater. 2004, 13, 896.
S. Ghodbane, A. Deneuville, Diamond Relat. Mater. 2006, 15, 589.
R. Haubner, M. Rudigier, Phys. Procedia 2013, 46, 71.
J. O. Orwa, K. W. Nugent, D. N. Jamieson, S. Prawer, Phys. Rev. B 2000, 62, 5461.
V. Mortet, Z. V. Živcová, A. Taylor, M. Davydová, O. Frank, P. Hubík, J. Lorincik, M. Aleshin, Diamond Relat. Mater. 2019, 93, 54.
M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, G. E. Yalovega, I. O. Bashkin, J. Alloys Compd. 2019, 792, 713.
A. T. Dideikin, A. E. Aleksenskii, M. V. Baidakova, P. N. Brunkov, M. Brzhezinskaya, V. Y. Davydov, V. S. Levitskii, S. V. Kidalov, Y. A. Kukushkina, D. A. Kirilenko, V. V. Shnitov, A. V. Shvidchenko, B. V. Senkovskiy, M. S. Shestakov, A. Y. Vul', Carbon 2017, 122, 737.
M. Brzhezinskaya, O. O. Kapitanova, O. V. Kononenko, S. Koveshnikov, V. Korepanov, D. Roshchupkin, J. Alloys Compd. 2020, 849, 156699.
V. V. Shnitov, M. K. Rabchinskii, M. Brzhezinskaya, D. Y. Stolyarova, S. V. Pavlov, M. V. Baidakova, A. V. Shvidchenko, V. A. Kislenko, S. A. Kislenko, P. N. Brunkov, Small 2021, 17, 2104316.
M. K. Rabchinskii, S. A. Ryzhkov, M. V. Gudkov, M. V. Baidakova, S. D. Saveliev, S. I. Pavlov, V. V. Shnitov, D. A. Kirilenko, D. Y. Stolyarova, A. M. Lebedev, R. G. Chumakov, M. Brzhezinskaya, K. A. Shiyanova, S. V. Pavlov, V. A. Kislenko, S. A. Kislenko, A. Makarova, V. P. Melnikov, P. N. Brunkov, 2D Mater. 2020, 7, 045001.
P. M. Valetsky, M. G. Sulman, L. M. Bronstein, E. M. Sulman, A. I. Sidorov, V. G. Matveeva, Nanotechnol Russia 2009, 4, 647.
G. Alba, D. Eon, M. P. Villar, R. Alcántara, G. Chicot, J. Cañas, J. Letellier, J. Pernot, D. Araujo, Surfaces 2020, 3, 61.
S. Kono, T. Kageura, Y. Hayashi, S.-G. Ri, T. Teraji, D. Takeuchi, M. Ogura, H. Kodama, A. Sawabe, M. Inaba, A. Hiraiwa, H. Kawarada, Diamond Relat. Mater. 2019, 93, 105.
B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones, N. J. Coville, New J. Chem. 2017, 41, 9497.
S. Stehlik, M. Varga, M. Ledinsky, V. Jirasek, A. Artemenko, H. Kozak, L. Ondic, V. Skakalova, G. Argentero, T. Pennycook, J. C. Meyer, A. Fejfar, A. Kromka, B. Rezek, J. Phys. Chem. C 2015, 119, 27708.
Z. Weiss, J. Anal. At. Spectrom. 2015, 30, 1038.
H. Takahara, R. Ishigami, K. Kodama, A. Kojyo, T. Nakamura, Y. Oka, J. Anal. At. Spectrom. 2016, 31, 940.
M. M. Brzhezinskaya, A. S. Vinogradov, A. V. Krestinin, G. I. Zvereva, A. P. Kharitonov, I. I. Kulakova, Phys. Solid State 2010, 52, 876.
M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, E. Bogoslavskaja, J. Electron Spectrosc. Relat. Phenom. 2014, 196, 99.
H. Girard, N. Simon, D. Ballutaud, M. Herlem, A. Etcheberry, Diamond Relat. Mater. 2007, 16, 316.
S.-G. Ri, D. Takeuchi, H. Kato, M. Ogura, T. Makino, S. Yamasaki, H. Okushi, B. Rezek, C. E. Nebel, Appl. Phys. Lett. 2005, 87, 262107.
A. A. Eliseev, N. I. Verbitskiy, A. A. Volykhov, A. V. Fedorov, O. Y. Vilkov, I. I. Verbitskiy, M. M. Brzhezinskaya, N. A. Kiselev, L. V. Yashina, Carbon 2016, 99, 619.
G. Zhang, T. Samuely, H. Du, Z. Xu, L. Liu, O. Onufriienko, P. W. May, J. Vanacken, P. Szabó, J. Kačmarčík, H. Yuan, P. Samuely, R. E. Dunin-Borkowski, J. Hofkens, V. V. Moshchalkov, ACS Nano 2017, 11, 11746.
G. Zhang, S. D. Janssens, J. Vanacken, M. Timmermans, J. Vacík, G. W. Ataklti, W. Decelle, W. Gillijns, B. Goderis, K. Haenen, P. Wagner, V. V. Moshchalkov, Phys. Rev. B 2011, 84, 214517.
D. Koh, S. K. Banerjee, J. Brockman, M. Kuhn, S. W. King, Diamond Relat. Mater. 2020, 101, 107647.
F. Maier, R. Graupner, M. Hollering, L. Hammer, J. Ristein, L. Ley, Surf. Sci. 1999, 443, 177.
B. P. Reed, M. E. Bathen, J. W. R. Ash, C. J. Meara, A. A. Zakharov, J. P. Goss, J. W. Wells, D. A. Evans, S. P. Cooil, Phys. Rev. B 2022, 105, 205304.
P. John, N. Polwart, C. E. Troupe, J. I. B. Wilson, Diamond Relat. Mater. 2002, 11, 861.
J. I. B. Wilson, J. S. Walton, G. Beamson, J. Electron Spectrosc. Relat. Phenom. 2001, 121, 183.
S. Chaudhuri, S. J. Hall, B. P. Klein, M. Walker, A. J. Logsdail, J. V. Macpherson, R. J. Maurer, Commun. Mater. 2022, 3, 6.
P. K. Baumann, R. J. Nemanich, Surf. Sci. 1998, 409, 320.
J. Ryl, M. Cieslik, A. Zielinski, M. Ficek, B. Dec, K. Darowicki, R. Bogdanowicz, Materials 2020, 13, 964.
A. Denisenko, C. Pietzka, A. Romanyuk, H. El-Hajj, E. Kohn, J. Appl. Phys. 2008, 103, 014904.
M. Pumera, Nanomaterials for Electrochemical Sensing and Biosensing, CRC Press, Boca Raton, FL 2014.
R. G. Compton, E. Kätelhön, K. R. Ward, E. Laborda, Understanding Voltammetry: Simulation of Electrode Processes, World Scientific (Europe), Singapore 2020.
T. J. Davies, R. G. Compton, J. Electroanal. Chem. 2005, 585, 63.
M. Da Rocha, B. Dunn, A. Rougier, Sol. Energy Mater. Sol. Cells 2019, 201, 110114.
V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597.
J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
R. Giannuzzi, R. Scarfiello, T. Sibillano, C. Nobile, V. Grillo, C. Giannini, P. D. Cozzoli, M. Manca, Nano Energy 2017, 41, 634.
A. Olejnik, M. Ficek, M. Szkodo, A. Stanisławska, J. Karczewski, J. Ryl, A. Dołęga, K. Siuzdak, R. Bogdanowicz, ACS Nano 2022, 16, 13183.
A. J. Bard, J. Am. Chem. Soc. 2010, 132, 7559.
T. Ando, K. Asai, J. Macpherson, Y. Einaga, T. Fukuma, Y. Takahashi, Anal. Chem. 2021, 93, 5831.
M. Sobaszek, K. Siuzdak, J. Ryl, M. Sawczak, S. Gupta, S. B. Carrizosa, M. Ficek, B. Dec, K. Darowicki, R. Bogdanowicz, J. Phys. Chem. C 2017, 121, 20821.
J. Ryl, L. Burczyk, R. Bogdanowicz, M. Sobaszek, K. Darowicki, Carbon 2016, 96, 1093.
A. Nefedov, C. Wöll, in Surface Science Techniques, (Eds.: G. Bracco, B. Holst), Springer, Berlin, Heidelberg 2013, pp. 277-303.
M. Brzhezinskaya, A. Irzhak, D. Irzhak, T. W. Kang, O. Kononenko, V. Matveev, G. Panin, D. Roshchupkin, Phys Status Solidi Rapid Res Lett 2016, 10, 639.
M. Brzhezinskaya, O. Kononenko, V. Matveev, A. Zotov, I. I. Khodos, V. Levashov, V. Volkov, S. I. Bozhko, S. V. Chekmazov, D. Roshchupkin, ACS Nano 2021, 15, 12358.
M. Brzhezinskaya, I. V. Mishakov, Y. I. Bauman, Y. V. Shubin, T. A. Maksimova, V. O. Stoyanovskii, E. Y. Gerasimov, A. A. Vedyagin, Appl. Surf. Sci. 2022, 590, 153055.
A. L. Pomerantsev, Progress in Chemometrics Research, Nova Publishers, Hauppage, NY 2005.
M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, G.-M. Rignanese, Comput. Phys. Commun. 2018, 226, 39.
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, J. Phys.: Condens. Matter 2019, 32, 015901.
J. E. Sipe, E. Ghahramani, Phys. Rev. B 1993, 48, 11705.
D. Porezag, M. R. Pederson, Phys. Rev. B 1996, 54, 7830.
T. Ozaki, Phys. Rev. B 2003, 67, 155108.
M. Cococcioni, S. de Gironcoli, Phys. Rev. B 2005, 71, 035105.