From everywhere all at once: Several colonization routes available to Svalbard in the early Holocene

. 2023 Mar ; 13 (3) : e9892. [epub] 20230319

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36950366

For many arctic species, the spatial (re-)colonization patterns after the last Pleistocene glaciation have been described. However, the temporal aspects of their colonization are largely missing. Did one route prevail early, while another was more important later? The high Arctic archipelago Svalbard represents a good model system to address timeframe of postglacial plant colonization. Svalbard was almost fully glaciated during last glacial maximum and (re-)colonization of vascular plants began in early Holocene. Early Holocene climatic optimum (HCO) supported an expanded establishment of a partly thermophilic vegetation. Today, we find remnants of this vegetation in sheltered regions referred to as "Arctic biodiversity hotspots". The oldest record of postglacial plant colonization to Svalbard is found in Ringhorndalen-Flatøyrdalen. Even though thermophilic species could establish also later in Holocene, only HCO was favorable for vast colonization, and only hotspots offered stable conditions for thermophilic populations throughout Holocene. Thus, these relic populations may reflect colonization patterns of HCO. We investigate whether the colonization direction of thermophilic plants (Arnica angustifolia, Campanula uniflora, Pinguicula alpina, Tofieldia pusilla, and Vaccinium uliginosum ssp. microphyllum) in Ringhorndalen-Flatøyrdalen was uniform and different from later colonization events in other localities and non-thermophilic plants (Arenaria humifusa, Bistorta vivipara, Juncus biglumis, Oxyria digyna, and Silene acaulis). We analyzed plastid haplotypes of the 10 taxa from Ringhorndalen-Flatøyrdalen, from later-colonized localities in Svalbard, and from putative source regions outside Svalbard. Only rare and thermophilic taxa Campanula uniflora and Vaccinium uliginosum ssp. microphyllum provided results suggesting at least two colonization events from different source regions. Tofieldia pusilla and all the non-thermophilic plants showed no clear phylogeographically differentiation within Svalbard. Two of the thermophilic species showed no sequence variation. Based on the results, a uniform colonization direction to Svalbard in early Holocene is not probable; several source areas and dispersal directions were contemporarily involved.

Zobrazit více v PubMed

Abbott, R. J. , & Brochmann, C. (2003). History and evolution of the arctic flora: In the footsteps of Eric Hultén. Molecular Ecology, 12, 299–313. 10.1046/j.1365-294X.2003.01731.x PubMed DOI

Abbott, R. J. , Chapman, H. M. , Crawford, R. M. M. , & Forbes, D. G. (1995). Molecular diversity and derivations of populations of DOI

Alcalá, R. E. , & Domínguez, C. A. (2012). Genetic structure of the carnivorous plant PubMed DOI

Allen, G. A. , Marr, K. L. , McCormick, L. J. , & Hebda, R. J. (2012). The impact of Pleistocene climate change on an ancient arctic‐alpine plant: Multiple lineages of disparate history in PubMed DOI PMC

Alsos, I. , Sjögren, P. , Edwards, M. , Landvik, J. , Gielly, L. , Forwick, M. , Coissac, E. , Jakobsen, L. , Føreid, M. , & Pedersen, M. (2016). Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. Holocene, 26, 627–642. 10.1177/0959683615612563 DOI

Alsos, I. G. , Ehrich, D. , Eidesen, P. B. , Solstad, H. , Westergaard, K. B. , Schönswetter, P. , Tribsch, A. , Birkeland, S. , Elven, R. , & Brochmann, C. (2015). Long‐distance plant dispersal to North Atlantic islands: Colonization routes and founder effect. AoB Plants, 7, plv036. 10.1093/aobpla/plv036 PubMed DOI PMC

Alsos, I. G. , Eidesen, P. B. , Ehrich, D. , Skrede, I. , Westergaard, K. , Jacobsen, G. H. , Landvik, J. Y. , Taberlet, P. , & Brochmann, C. (2007). Frequent long‐distance plant colonization in the changing arctic. Science, 316(5831), 1606–1609. 10.1126/science.1139178 PubMed DOI

Alsos, I. G. , Engelskjøn, T. , Gielly, L. , Taberlet, P. , & Brochmann, C. (2005). Impact of ice ages on circumpolar molecular diversity: Insights from an ecological key species. Molecular Ecology, 14, 2739–2753. 10.1111/j.1365-294X.2005.02621.x PubMed DOI

Alsos, I. G. , Rijal, D. P. , Ehrich, D. , Karger, D. N. , Yoccoz, N. G. , Heintzman, P. D. , Brown, A. G. , Lammers, Y. , Pellissier, L. , Alm, T. , Bråthen, K. A. , Coissac, E. , Merkel, M. K. F. , Alberti, A. , Denoeud, F. , & Bakke, J. (2022). Postglacial species arrival and diversity buildup of northern ecosystems took millennia. Science Advances, 8, 7434. 10.1126/sciadv.abo7434 PubMed DOI PMC

Alsos, I. G. , Ware, C. , & Elven, R. (2015). Past Arctic aliens have passed away, current ones may stay. Biological Invasions, 17, 3113–3123. 10.1007/s10530-015-0937-9 DOI

Bernardová, A. , & Košnar, J. (2012). What do Holocene sediments in Petuniabukta, Spitsbergen reveal? Polish Polar Research, 33, 329–345. 10.2478/v10183−012−0023−2 DOI

Bezrukova, E. v. , Belov, A. V. , & Orlova, L. A. (2011). Holocene vegetation and climate variability in north pre‐Baikal region, East Siberia, Russia. Quaternary International, 237, 74–82. 10.1016/j.quaint.2011.01.012 DOI

Birkeland, S. , Borgenkjetne, I. E. , Brysting, A. K. , Elven, R. , & Alsos, I. G. (2017). Living on the edge: Conservation genetics of seven Thermophilous plant species in a high Arctic archipelago. AoB Plants, 9 ( 1 ) , plx001 . 10.1093/aobpla/plx001 PubMed DOI PMC

Birks, H. H. (1991). Holocene vegetational history and climatic change in West Spitsbergen‐plant macrofossils from Skardtjørna, an Arctic lake. Holocene, 1, 209–218. 10.1177/095968369100100303 DOI

Birks, H. H. , Paus, A. , Svenndse, J. I. , Alm, T. , Mangerud, J. , & Landvik, J. Y. (1994). Late Weichselian environmental change in Norway, including Svalbard. Journal of Quaternary Science, 9, 133–145. 10.1002/jqs.3390090207 DOI

Blyakharchuk, T. A. , & Sulerzhitsky, L. D. (1999). Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. Holocene, 9, 621–628. 10.1191/095968399676614561 DOI

Briner, J. P. , McKay, N. P. , Axford, Y. , Bennike, O. , Bradley, R. S. , de Vernal, A. , Fisher, D. , Francus, P. , Fréchette, B. , Gajewski, K. , Jennings, A. , Kaufman, D. S. , Miller, G. , Rouston, C. , & Wagner, B. (2016). Holocene climate change in Arctic Canada and Greenland. Quaternary Science Reviews, 147, 340–364. 10.1016/j.quascirev.2016.02.010 DOI

Caner, A. (2020). Haplotypes: Manipulating DNA sequences and estimating unambiguous haplotype network with statistical parsimony. R package version 1.1.2.

Carlquist, S. (1981). Chance dispersal: Long‐distance dispersal of organisms, widely accepted as a major cause of distribution patterns, poses challenging problems of analysis. American Scientist, 69, 509–516.

CLIMAP Project . (1981). Seasonal reconstructions of the Earth's surface at the last glacial maximum.

Coulson, S. J. (2015). The alien terrestrial invertebrate fauna of the high Arctic archipelago of Svalbard: Potential implications for the native flora and fauna. Polar Research, 34, 27364. 10.3402/polar.v34.27364 DOI

Cronn, R. C. , Small, R. L. , Haselkorn, T. , & Wendel, J. F. (2002). Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. American Journal of Botany, 89, 707–725. 10.3732/ajb.89.4.707 PubMed DOI

Crowl, A. A. , Mavrodiev, E. , Mansion, G. , Haberle, R. , Pistarino, A. , Kamari, G. , Phitos, D. , Borsch, T. , & Cellinese, N. (2014). Phylogeny of campanuloideae (campanulaceae) with emphasis on the utility of nuclear pentatricopeptide repeat (PPR) genes. PLoS One, 9, e94199. 10.1371/journal.pone.0094199 PubMed DOI PMC

Cushing, E. J. (1967a). Evidence for differential pollen preservation in late quaternary sediments in Minnesota. Review of Palaeobotany and Palynology, 4, 87–101. 10.1016/0034-6667(67)90175-3 DOI

Cushing, E. J. (1967b). Late‐Wisconsin pollen stratigraphy and the glacial sequence in Minnesota. Quatarnary Paleoecology.

Davis, B. A. S. , Brewer, S. , Stevenson, A. C. , Guiot, J. , Allen, J. , Almqvist‐Jacobson, H. , Ammann, B. , Andreev, A. A. , Argant, J. , Atanassova, J. , et al. (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 22, 1701–1716. 10.1016/S0277-3791(03)00173-2 DOI

de Vernal, A. , Hillaire‐Marcel, C. , & Darby, D. A. (2005). Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene. Paleoceanography, 20, PA4018. 10.1029/2005PA001157 DOI

DeChaine, E. G. (2008). A bridge or a barrier? Beringia's influence on the distribution and diversity of tundra plants. Plant Ecology and Diversity, 1, 197–207. 10.1080/17550870802328660 DOI

Dyke, A. S. (2004). An outline of north American deglaciation with emphasis on central and northern Canada. Developments in Quaternary Sciences, 2, 373–424. 10.1016/S1571-0866(04)80209-4 DOI

Dyke, A. S. , England, J. , Reimnitz, E. , & Jetté, H. (1997). Changes in driftwood delivery to the Canadian Arctic archipelago: The hypothesis of postglacial oscillations of the transpolar drift. Arctic, 50, 1–16.

Edwards, M. E. , Mock, C. J. , Finney, B. P. , Barber, V. A. , & Bartlein, P. J. (2001). Potential analogues forpaleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric‐circulation controls of regional temperature and moisture responses. Quaternary Science Reviews, 20, 189–202. 10.1016/S0277-3791(00)00123-2 DOI

Eggertsson, Ò. (1994). Driftwood as an indicator of relative changes in the influx of Arctic and Atlantic water into the coastal areas of Svalbard. Polar Research, 13, 209–218. 10.3402/polar.v13i2.6694 DOI

Eguchi, S. , & Tamura, M. N. (2016). Evolutionary timescale of monocots determined by the fossilized birth‐death model using a large number of fossil records. Evolution (N Y), 70, 1136–1144. 10.1111/evo.12911 PubMed DOI

Ehlers, J. , & Gibbard, P. L. (2007). The extent and chronology of Cenozoic global glaciation. Quaternary International, 164–165, 6–20. 10.1016/j.quaint.2006.10.008 DOI

Eidesen, P. B. , Alsos, I. G. , Popp, M. , Stensrud, S. J. , & Brochmann, C. (2007). Nuclear vs. plastid data: Complex Pleistocene history of a circumpolar key species. Molecular Ecology, 16, 3902–3925. 10.1111/j.1365-294X.2007.03425.x PubMed DOI

Eidesen, P. B. , Arnesen, G. , Elven, R. , & Søli, G. (2018). Kartlegging av Ringhorndalen, Wijdefjorden: en uutforsket arktisk oase, Report to the Governor of Svalbard.

Eidesen, P. B. , Carlsen, T. , Molau, U. , & Brochmann, C. (2007). Repeatedly out of Beringia: DOI

Eidesen, P. B. , Ehrich, D. , Bakkestuen, V. , Alsos, I. G. , Gilg, O. , Taberlet, P. , & Brochmann, C. (2013). Genetic roadmap of the Arctic: Plant dispersal highways, traffic barriers and capitals of diversity. New Phytologist, 200, 898–910. 10.1111/nph.12412 PubMed DOI

Eidesen, P. B. , Little, L. , Müller, E. , Dickinson, K. J. M. , & Lord, J. M. (2017). Plant‐pollinator interactions affect colonization efficiency: Abundance of blue‐purple flowers is correlated with species richness of bumblebees in the Arctic. Biological Journal of the Linnean Society, 121, 150–162. 10.1093/biolinnean/blw006 DOI

Eidesen, P. B. , Strømmen, K. , & Vader, A. (2013). Fjelltettegras

Ekenäs, C. , Baldwin, B. G. , & Andreasen, K. (2007). A molecular phylogenetic study of DOI

Elvebakk, A. (2005). “Arctic hotspot complexes” – proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia, 35, 1067–1079. 10.1127/0340-269X/2005/0035-1067 DOI

Elvebakk, A. , & Nilsen, L. (2002). Indre Wijdefjorden med sidefjordar: eit botanisk unikt steppeområde. Rapport Til Sysselmannen På Svalbard, Tromsø.

Elvebakk, A. , & Nilsen, L. (2016). Stepperøyrkvein

Fan, D. M. , Chen, J. H. , Meng, Y. , Wen, J. , Huang, J. L. , & Yang, Y. P. (2013). Molecular phylogeny of Koenigia L. (Polygonaceae: Persicarieae): Implications for classification, character evolution and biogeography. Molecular Phylogenetics and Evolution, 69, 1093–1100. 10.1016/j.ympev.2013.08.018 PubMed DOI

Farnsworth, W. R. , Allaart, L. , Ingólfsson, Ó. , Alexanderson, H. , Forwick, M. , Noormets, R. , Retelle, M. , & Schomacker, A. (2020). Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth‐Science Reviews, 208, 103249. 10.1016/j.earscirev.2020.103249 DOI

Frajman, B. , Eggens, F. , & Oxelman, B. (2009). Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae)‐a multigene phylogenetic approach with relative dating. Systematic Biology, 58, 328–345. 10.1093/sysbio/syp030 PubMed DOI

Gabrielsen, T. M. , Bachmann, K. , Jakobsen, K. S. , & Brochmann, C. (1997). Glacial survival does not matter: RAPD phylogeography of Nordic DOI

Gajewski, K. (2015). Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland. Global and Planetary Change, 128, 14–23. 10.1016/j.gloplacha.2015.02.003 DOI

Guindon, S. , Dufayard, J. F. , Lefort, V. , Anisimova, M. , Hordijk, W. , & Gascuel, O. (2010). New algorithms and methods to estimate maximum‐likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. 10.1093/sysbio/syq010 PubMed DOI

Gussarova, G. , Allen, G. A. , Mikhaylova, Y. , McCormick, L. J. , Mirré, V. , Marr, K. L. , Hebda, R. J. , & Brochmann, C. (2015). Vicariance, long‐distance dispersal, and regional extinction‐recolonization dynamics explain the disjunct circumpolar distribution of the arctic‐alpine plant PubMed DOI

Gussarova, G. , Alsos, I. G. , & Brochmann, C. (2012). Annual plants colonizing the Arctic? Phylogeography and genetic variation in the DOI

Hald, M. , Ebbesen, H. , Forwick, M. , Godtliebsen, F. , Khomenko, L. , Korsun, S. , Ringstad Olsen, L. , & Vorren, T. O. (2004). Holocene paleoceanography and glacial history of the West Spitsbergen area, euro‐Arctic margin. Quaternary Science Reviews, 23, 2075–2088. 10.1016/j.quascirev.2004.08.006 DOI

Hewitt, G. M. (2004). The structure of biodiversity – insights from molecular phylogeography. Frontiers in Zoology, 1. 10.1186/1742-9994-1-4 PubMed DOI PMC

Hoang, D. T. , Chernomor, O. , von Haeseler, A. , Minh, B. Q. , & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. 10.1093/molbev/msx281 PubMed DOI PMC

Hörandl, E. , & Paun, O. (2007). Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials. In Apomixis: Evolution, mechanisms and perspectives (pp. 169–194). ARG Gantner Verlag KG.

Hughes, A. L. C. , Gyllencreutz, R. , Lohne, Ø. S. , Mangerud, J. , & Svendsen, J. I. (2016). The last Eurasian ice sheets – a chronological database and time‐slice reconstruction, DATED‐1. Boreas, 45, 1–45. 10.1111/bor.12142 DOI

Hultén, E. (1937). Outline of the history of arctic and boreal biota during the quaternary period. Bokförlags Aktiebolaget Thule.

Hultén, E. , & Fries, M. (1986). Atlas of north European vascular plants north of the tropic of cancer. Koeltz Scientific.

Hyvärinen, H. (1970). Flandrian Pollen Diagrams from Svalbard. Geografiska Annaler. Series A, Physical Geography, 52, 213–222. 10.1080/04353676.1970.11879826 DOI

Ikeda, H. , Eidesen, P. B. , Yakubov, V. , Barkalov, V. , Brochmann, C. , & Setoguchi, H. (2017). Late Pleistocene origin of the entire circumarctic range of the arctic‐alpine plant PubMed DOI

Kalyaanamoorthy, S. , Minh, B. Q. , Wong, T. K. F. , von Haeseler, A. , & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Katoh, K. , Rozewicki, J. , & Yamada, K. D. (2018). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC

Koch, M. A. , Kiefer, C. , Ehrich, D. , Vogel, J. , Brochmann, C. , & Mummenhoff, K. (2006). Three times out of Asia minor: The phylogeography of PubMed DOI

Kruse, F. (2016). Is Svalbard a pristine ecosystem? Reconstructing 420 years of human presence in an Arctic archipelago. Polar Record, 52, 518–534. 10.1017/S0032247416000309 DOI

Kuraku, S. , Zmasek, C. M. , Nishimura, O. , & Katoh, K. (2013). aLeaves facilitates on‐demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research, 41, W22–W28. 10.1093/nar/gkt389 PubMed DOI PMC

Landvik, J. Y. , Bondevik, S. , Elverhøi, A. , Fjeldskaar, W. , Mangerud, J. , Salvigsen, O. , Siegert, M. J. , Svendsen, J.‐I. , & Vorren, T. O. (1998). The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quarternary Science Reviews, 17, 43–75. 10.1016/S0277-3791(97)00066-8 DOI

Loeng, H. , & Drinkwater, K. (2007). An overview of the ecosystems of the Barents and Norwegian seas and their response to climate variability. Deep‐Sea Research Part II: Topical Studies in Oceanography, 54, 2478–2500. 10.1016/j.dsr2.2007.08.013 DOI

Löhne, C. , & Borsch, T. (2005). Molecular evolution and phylogenetic utility of the petD group II intron: A case study in basal angiosperms. Molecular Biology and Evolution, 22, 317–332. 10.1093/molbev/msi019 PubMed DOI

Mangerud, J. , & Svendsen, J. I. (2018). The Holocene thermal maximum around Svalbard, Arctic North Atlantic; molluscs show early and exceptional warmth. Holocene, 28, 65–83. 10.1177/0959683617715701 DOI

Marr, K. L. , Allen, G. A. , Hebda, R. J. , & Mccormick, L. J. (2013). Phylogeographical patterns in the widespread arctic‐alpine plant DOI

Miller, G. H. , Brigham‐Grette, J. , Alley, R. B. , Anderson, L. , Bauch, H. A. , Douglas, M. S. V. , Edwards, M. E. , Elias, S. A. , Finney, B. P. , Fitzpatrick, J. J. , Funder, S. V. , Herbert, T. D. , Hinzman, L. D. , Kaufman, D. S. , MacDonald, G. M. , Polyak, L. , Robock, A. , Serreze, M. C. , Smol, J. P. , … Wolff, E. W. (2010). Temperature and precipitation history of the Arctic. Quaternary Science Reviews, 29, 1679–1715. 10.1016/j.quascirev.2010.03.001 DOI

Moros, M. , Emeis, K. , Risebrobakken, B. , Snowball, I. , Kuijpers, A. , McManus, J. , & Jansen, E. (2004). Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland. Quaternary Science Reviews, 23, 2113–2126. 10.1016/j.quascirev.2004.08.003 DOI

Muñoz, J. , Felicísimo, Á. M. , Cabezas, F. , Burgaz, A. R. , & Martínez, I. (2004). Wind as a long‐distance dispersal vehicle in the southern hemisphere. Science, 1979(304), 1144–1147. 10.1029/2001gl013938 PubMed DOI

Nathan, R. (2006). Long‐distance dispersal of plants. Science, 1979(313), 786–788. 10.1126/science.1124975 PubMed DOI

Nguyen, L.‐T. , Schmidt, H. A. , von Haeseler, A. , & Minh, B. Q. (2015). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Park, J. M. , Kovačić, S. , Liber, Z. , Eddie, W. M. M. , & Schneeweiss, G. M. (2006). Phylogeny and biogeography of isophyllous species of campanula (Campanulaceae) in the Mediterranean area. Systematic Botany, 31, 862–880. 10.1600/036364406779695924 DOI

Paus, A. (2021). Lake Heimtjønna at dovre, mid‐Norway, reveals remarkable late‐glacial and Holocene sedimentary environments and the early establishment of spruce ( DOI

Pebesma, E. , & Bivand, R. S. (2005). S classes and methods for spatial data: The sp package. R News, 5, 9–13.

Pellissier, L. , Eidesen, P. B. , Ehrich, D. , Descombes, P. , Schönswetter, P. , Tribsch, A. , Westergaard, K. B. , Alvarez, N. , Guisan, A. , Zimmermann, N. E. , Normand, S. , Vittoz, P. , Luoto, M. , Damgaard, C. , Brochmann, C. , Wisz, M. S. , & Alsos, I. G. (2016). Past climate‐driven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 43, 461–470. 10.1111/jbi.12657 DOI

R Core Team . (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Ralska‐Jasiewiczowa, M. , & Rzetkowska, A. (1987). Wyniki analizy pylkowej i makroskopowej kopalnych osadow jeziornych z Niechorza I na Wybrzezu Baltyckim [Pollen and macrofossil stratigraphy of fossil lake sediments at Niechorze I, west Baltic Coast] (Vol. 27, pp. 153–178). Acta Palaeobotanica.

Rautenberg, A. , Hathaway, L. , Oxelman, B. , & Prentice, H. C. (2010). Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 57, 978–991. 10.1016/j.ympev.2010.08.003 PubMed DOI

Rautenberg, A. , Sloan, D. B. , Aldén, V. , & Oxelman, B. (2012). Phylogenetic relationships of Silene multinervia and Silene section Conoimorpha (Caryophyllaceae). Systematic Botany, 37, 226–237. 10.1600/036364412X616792 DOI

Robledo‐Arnuncio, J. J. , Klein, E. K. , Muller‐Landau, H. C. , & Santamaría, L. (2014). Space, time and complexity in plant dispersal ecology. Movement Ecology, 2, 16. 10.1186/s40462-014-0016-3 PubMed DOI PMC

Salvigsen, O. , Forman, S. L. , & Miller, G. H. (1992). Thermophilous molluscs on Svalbard during the Holocene and their paleoclimatic implications. Polar Research, 11, 1–10. 10.3402/polar.v11i1.6712 DOI

Salvigsen, O. , & Høgvard, K. (2006). Glacial history, Holocene shoreline displacement and palaeoclimate based on radiocarbon ages in the area of Bockfjorden, North‐Western Spitsbergen, Svalbard. Polar Research, 25, 15–24. 10.3402/polar.v25i1.6235 DOI

Sang, T. , Crawford, D. J. , & Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of PubMed DOI

Sauer, J. D. (1988). Plant migration: The dynamics of geographic patterning in seed plant species. University of California Press.

Schliep, K. (2011). Phangorn: Phylogenetic analysis in R. Bioinformatics, 27, 592–593. 10.1093/bioinformatics/btq706 PubMed DOI PMC

Schliep, K. , Potts, J. A. , Morrison, A. D. , & Grimm, W. G. (2017). Intertwining phylogenetic trees and networks. Methods in Ecology and Evolution, 8, 1212–1220. 10.7287/peerj.preprints.2054v1 DOI

Schönswetter, P. , Suda, J. , Popp, M. , Weiss‐Schneeweiss, H. , & Brochmann, C. (2007). Circumpolar phylogeography of PubMed DOI

Schwery, O. , Onstein, R. E. , Bouchenak‐Khelladi, Y. , Xing, Y. , Carter, R. J. , & Linder, H. P. (2015). As old as the mountains: The radiations of the Ericaceae. New Phytologist, 207, 355–367. 10.1111/nph.13234 PubMed DOI

Shaw, J. , Lickey, E. B. , Beck, J. T. , Farmer, S. B. , Liu, W. , Miller, J. , Siripun, K. C. , Winder, C. T. , Schilling, E. E. , & Small, R. L. (2005). The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92, 142–166. 10.3732/ajb.92.1.142 PubMed DOI

Shaw, J. , Lickey, E. B. , Schilling, E. E. , & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94, 275–288. 10.3732/ajb.94.3.275 PubMed DOI

Skrede, I. , Borgen, L. , & Brochmann, C. (2009). Genetic structuring in three closely related circumpolar plant species: AFLP versus microsatellite markers and high Arctic versus arctic‐alpine distributions. Heredity (Edinb), 102, 293–302. 10.1038/hdy.2008.120 PubMed DOI

South, A. (2011). Rworldmap: A new R package for mapping global data. R Journal, 3, 35–43.

Svendsen, J. I. , & Mangerud, J. (1997). Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene, 7, 45–57. 10.1177/095968369700700105 DOI

Taberlet, P. , Gielly, L. , Pautou, G. , & Bouvet, J. (1991). Universal primers for amplification of three non‐coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105–1109. 10.1007/BF00037152 PubMed DOI

Tremblay, L. B. , Mysak, L. A. , & Dyke, A. S. (1997). Evidence from driftwood records for century‐to‐millennial scale variations of the high latitude atmospheric circulation during the Holocene. Geophysical Research Letters, 24, 2027–2030. 10.1029/97GL02028 DOI

Trewick, S. A. , Morgan‐Richards, M. , & Chapman, H. M. (2004). Chloroplast DNA diversity of PubMed DOI

Velichko, A. A. , Catto, N. , Drenova, A. N. , Klimanov, V. A. , Kremenetski, K. V. , & Nechaev, V. P. (2002). Climatechanges in East Europe and Siberia at the Late glacial‐holocene transition. Quaternary International, 91, 75–99. 10.1016/S1040-6182(01)00104-5 DOI

Voldstad, L. H. , Alsos, I. G. , Farnsworth, W. R. , Heintzman, P. D. , Håkansson, L. , Kjellman, S. E. , Rouillard, A. , Schomacker, A. , & Eidesen, P. B. (2020). A complete Holocene lake sediment ancient DNA record reveals long‐standing high Arctic plant diversity hotspot in northern Svalbard. Quaternary Science Reviews, 234, 106207. 10.1016/j.quascirev.2020.106207 DOI

Walker, M. D. (1995). Patterns and causes of arctic plant community diversity . In Chapin, F. S. III , Körner, C. (Eds.), Arctic and alpine biodiversity: Patterns, Causes and Ecosystem Consequences (pp. 3–20). Springer.

Wang, Q. , Liu, J. , Allen, G. A. , Ma, Y. , Yue, W. , Marr, K. L. , & Abbott, R. J. (2016). Arctic plant origins and early formation of circumarctic distributions: A case study of the mountain sorrel, PubMed DOI

Ware, C. , Bergstrom, D. M. , Müller, E. , & Alsos, I. G. (2012). Humans introduce viable seeds to the Arctic on footwear. Biological Invasions, 14, 567–577. 10.1007/s10530-011-0098-4 DOI

Westergaard, K. B. , Alsos, I. G. , Popp, M. , Engelskjø, T. , Flatberg, K. I. , & Brochmann, C. (2011). Glacial survival may matter after all: Nunatak signatures in the rare European populations of two west‐arctic species. Molecular Ecology, 20, 376–393. 10.1111/j.1365-294X.2010.04928.x PubMed DOI

Westergaard, K. B. , Jørgensen, M. H. , Gabrielsen, T. M. , Alsos, I. G. , & Brochmann, C. (2010). The extreme Beringian/Atlantic disjunction in DOI

Whittington, G. , Fallick, A. E. , & Edwards, K. J. (1996). Stable oxygen isotope and pollen records from eastern Scotland and a consideration of late‐glacial and early Holocene climate change for Europe. Journal of Quaternary Science, 11, 327–340.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer‐Verlag.

Wittzell, H. (1999). Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Molecular Ecology, 8, 2023–2035. 10.1046/j.1365-294x.1999.00807.x PubMed DOI

Young, N. E. , & Briner, J. P. (2015). Holocene evolution of the western Greenland ice sheet: Assessing geophysical ice‐sheet models with geological reconstructions of ice‐margin change. Quaternary Science Reviews, 114, 1–17. 10.1016/j.quascirev.2015.01.018 DOI

Yurtsev, B. A. (1982). 9 – Relics of the xerophyte vegetation of Beringia in northeastern Asia . In Hopkins, D. M. , Matthews, J. V. , Jr Schweger, C. E. , & Young, S. B. (Eds.), Paleoecology of Beringia (pp. 157–177). Academic Press. 10.1016/B978-0-12-355860-2.50018-1 DOI

Zhang, Q. , Sundqvist, H. S. , Moberg, A. , Körnich, H. , Nilsson, J. , & Holmgren, K. (2010). Climate change between the mid and late Holocene in northern high latitudes‐Part 2: Model‐data comparisons. Climate of the Past, 6, 609–626. 10.5194/cp-6-609-2010 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...